
СРС№1 Вариант 9

Выполнила Сапаралы Жанна ББ 15-04

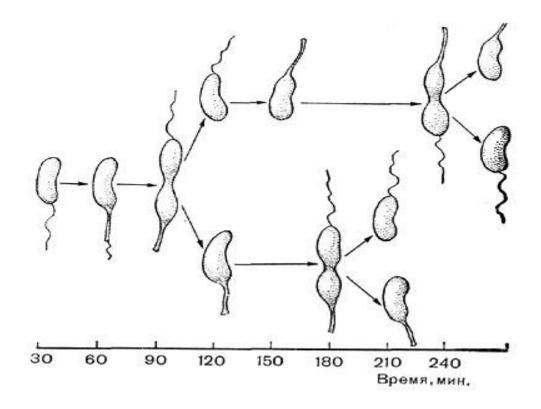
Вегетативный клеточный цикл

• Вегетативный клеточный цикл - клеточный цикл не связанный с дифференцировкой.

-Типы клеточной дифференцировки у прокариот

• В результате модификации клеточного цикла бактерии могут образовывать специализированные, морфологические дифференцированные структуры: покоящиеся формы, клетки со специализированными метаболическими функциями, формы, служащие для размножения.

Мономорный В.К.Ц.


При мономорфном вегетативном клеточном цикле, характерном для большинства бактерий, образуются один морфологический тип клеток.

Диморфный В.К.Ц.

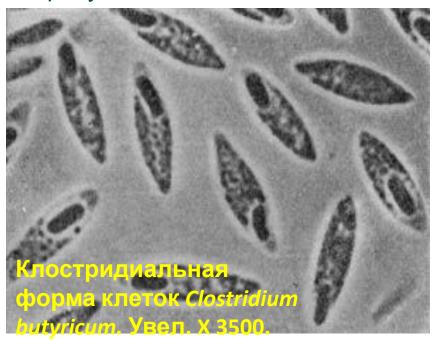
При диморфномобразуется 2 типа клеток, различающихся формой, размерами. У грамотрицательных, например стебельковых форм рода Caulobacter, при размножений образуется 2 типа клеток: подвижные, со жгутиками, дочерние и не подвижные, имеющие стебелек материнские. Каждая из форм отличается клеточным циклом.

Полиморфный

Полиморфный клеточный цикл отмечен у бактерий, которые в зависимости от среды обитания образуют 2 и более морфологических типов клеток. Характерен для почкующихся бактерий-Rhodopseudomonas, Hyphomicrobium. Rhodomicrobium. У них может быть диморфный клеточный цикл, когда материнская клетка дает гифу, на конце которой имеется почка со жгутиком. У Hyphomicrobium на среде с метанолом наблюдается подобный диморфный клеточный цикл.

Рис. Клеточный цикл Caulobacter crescentus. G.S-периоды: отсутствия синтеза ДНК (G), синтеза ДНК (S).

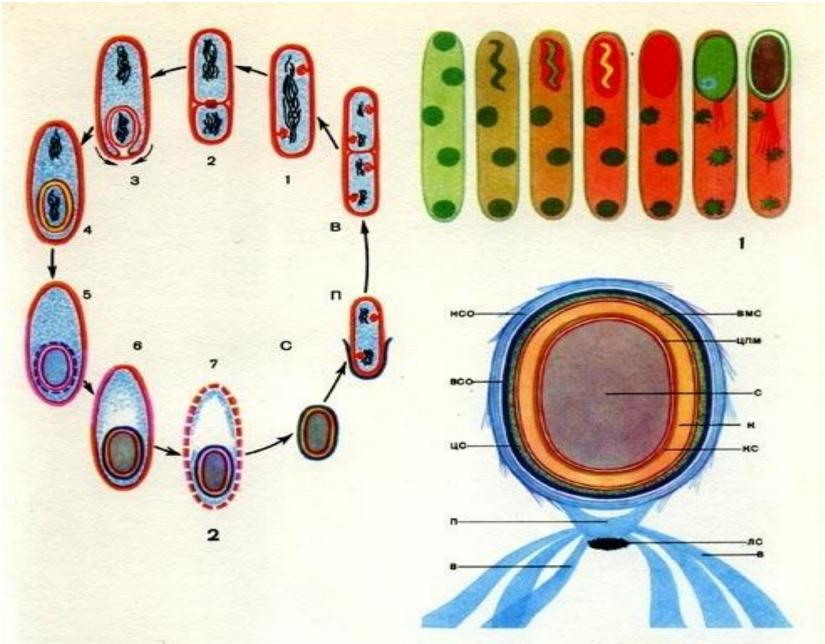
- Все известные проявления морфологической дифференцировки прокариот направлены на повышение их выживаемости.
- Формирование специальных клеток, обладающих повышенной устойчивостью к перенесению неблагоприятных условий (эндоспоры, цисты, экзоспоры).
- Формирование структур, обеспечивающих эффективное размножение прокариотных организмов (гормогонии, баеоциты цианобактерий, акинеты).

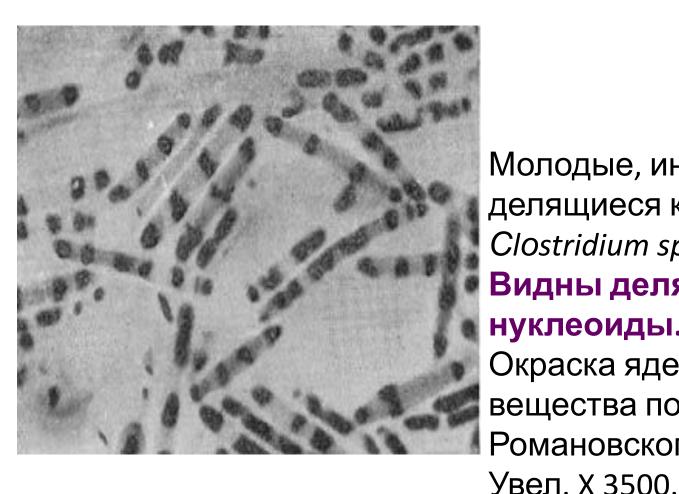

Споры – это специфическим образом устроенные покоящиеся зародышевые клетки, выдерживающие влияние высокой температуры, радиации, вакуума, различного рода токсических веществ и других неблагоприятных факторов, приводящих к гибели

вегетативные клетки.

Созревание спор у *Cl. sporopenitum*. Форма спор цилиндрическая. Увел. X 3200.

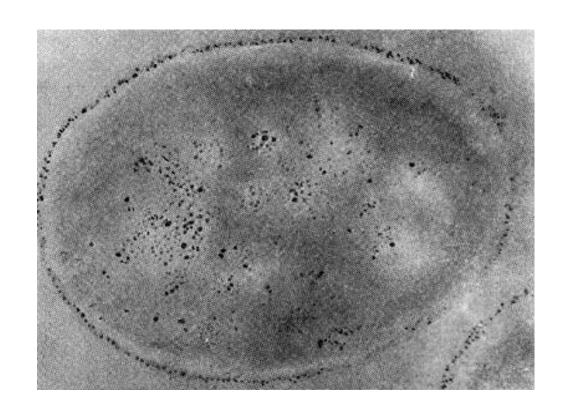
- Бактериальные споры образуются эндогенно, т.е. внутри материнских клеток.
- Формирование спор наступает на определенной стадии развития.
- Когда в среде исчерпываются пищевые ресурсы (источники С и N) и происходит накопление токсичных продуктов обмена веществ.




Основное назначение спорообразования

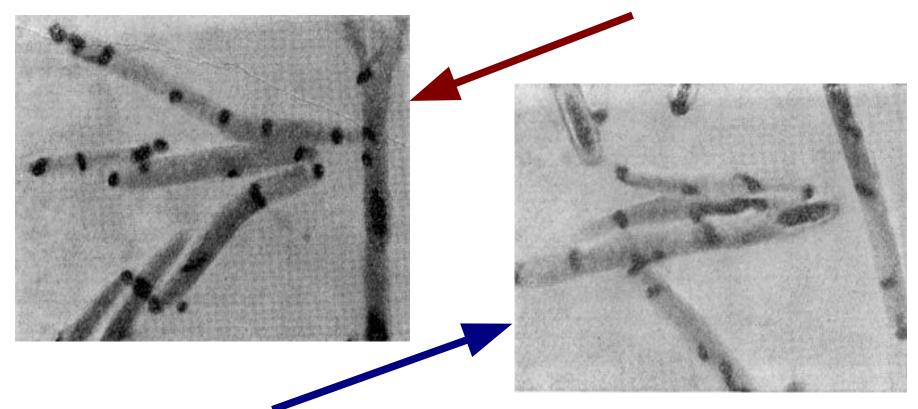
• перевести культуру в покоящееся (анабиотическое) состояние.

• Это позволяет бактериям сохраниться при неблагоприятных условиях среды, а при изменении условий в благоприятную сторону снова перейти к вегетативному росту.



Молодые интенсивно делящиеся клетки анаэробов содержат нуклеоиды в виде гантелек, или образных фигур

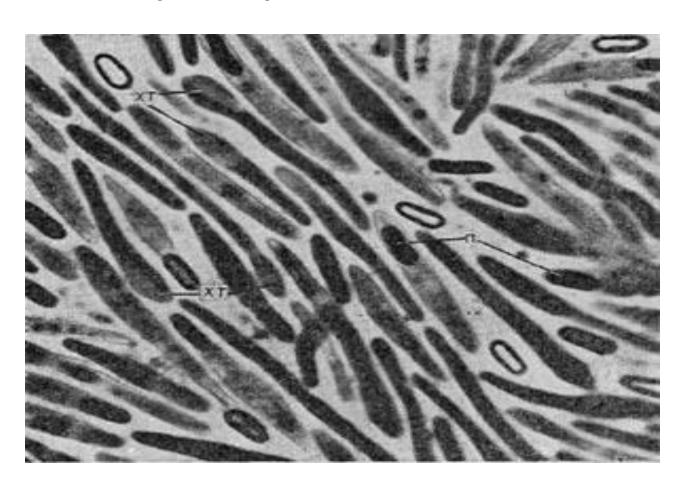
Молодые, интенсивно делящиеся клетки Clostridium sporopenitum. Видны делящиеся нуклеоиды. Окраска ядерного вещества по методу Романовского — Гимза.


Включения гранулезы в клетках *Clostridium taeniosporum*. «Окраска» полисахаридов серебром. Отложения зерен серебра видны в светлых шаровидных включениях и в клеточной стенке. Увел. х 45 000.

Споры служат целям сохранения вида

- Первым признаком наступления спорообразования является изменение морфологии нуклеоидов, принимающих вид шаровидных телец.
- Несколько нуклеоидов сближаются на одном из полюсов клетки, сливаются и образуют продольно расположенный извитый хроматиновый (адерный) таж

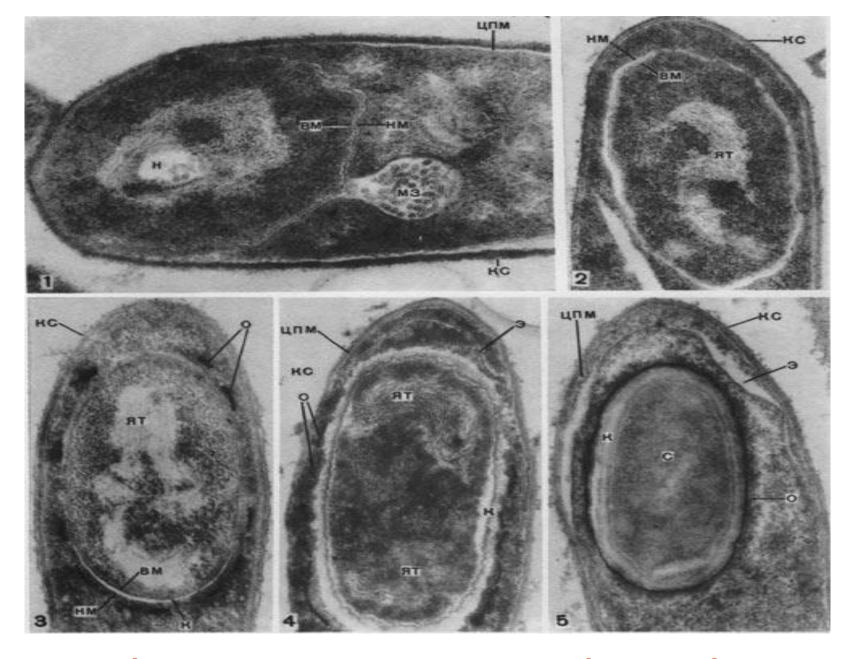
Слияние нуклеоидов на полюсах клеток (перед спорообразованием). *Clostridium sporopenitum*. Увел. X 3500.


Образование ядерных тяжей в процессе спорообразования. *Clostridium sporopenitum*. Увел. X 3500.


- Зона цитоплазмы, в которой расположен ядерный тяж, превращается в проспору.
- У бактерий с мелкими клетками перед спорообразованием имеются обычно 2 отдельных нуклеоида, которые сливаются с образованием осевой хроматиновой нити.

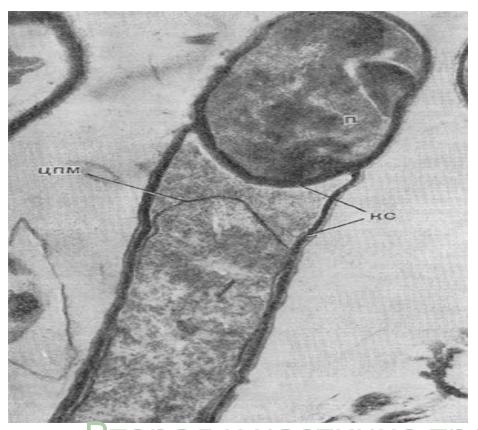
• У многих сахаролитических анаэробов ядерное вещество имеет вид хроматиновой сеточки, расположенной по всей цитоплазме.

- С помощью обычного микроскопа можно выделить три стадии формирования споры.
- Первая возникновение на одном из полюсов клетки спорогенной зоны, в которой хорошо заметно ядерное вещество в виде светлых палочек.
- Вторая спорогенная зона превращается в темную (оптически плотную) овальной формы проспору с четко выраженными контурами.
- Третья проспоры постепенно светлеют, приобретая способность сильно преломлять свет, и теряют способность окрашиваться красителями.


Живые клетки *Cl. sporopenitum*. Видно образование хроматиновых тяжей и проспор. ХТ хроматиновые тяжи, П — проспоры. Увел. X 2000.

Созревание спор у *Cl. sporopenitum.* **Форма спор цилиндрическая**Увел. X 3200.

Созревшие споры выглядят светлыми, резко преломляющими свет тельцами, обладающими мощной оболочкой. Форма зрелых спор может быть различной у разных видов: сферическая, овальная, яйцевидная, цилиндрическая.



Спорообразование у анаэробных бактерий

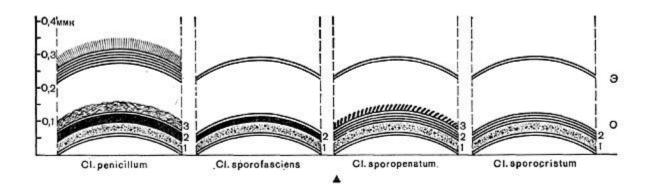
- Формирование проспоры начинается с инвагинации (врастания) цитоплазматическоп мембраны ближе к одному из полюсов клетки. При этом мембрана продвигается к центру клетки, и полюса ее сливаются с образованием споровой перегородки (септы). Септа состоит из двух элементарных мембран.
- Эту стадию можно рассматривать как модифицированное клеточное деление, которое происходит благодаря инвагинации цитоплазматической мембраны и образования септы.

- Следующей стадией является процесс «поглощения» материнской клеткой септированного (отсеченного) участка цитоплазмы с ядром. Этот процесс осуществляется путем роста и продвижения периферических участков мембраны материнской клетки по направлению к полюсу клетки.
- Сближающиеся участки мембраны сливаются и образуется проспора, обладающая двумя элементарными (трехслойными) мембранами внутренней и внешней.

- В конце этой стадии образуется своеобразный двуклеточный организм: внутри цитоплазмы материнской клетки возникает новая клетка — проспора, окруженная, в отличие от материнской, двумя элементарными мембранами.
- С этого момента начинается новая необратимая фаза развития и метаболизма, заканчивающаяся созреванием споры и гибелью материнской клетки.

Влияние хлорамфеникола (антибиотика, подавляющего синтез белка) на спорообразование.

- Вторая и частично третья стадии спорообразования обладают свойством обратимости.
- Начавшийся процесс спорообразования превратиться в обычный процесс вегетативного деления клеток.

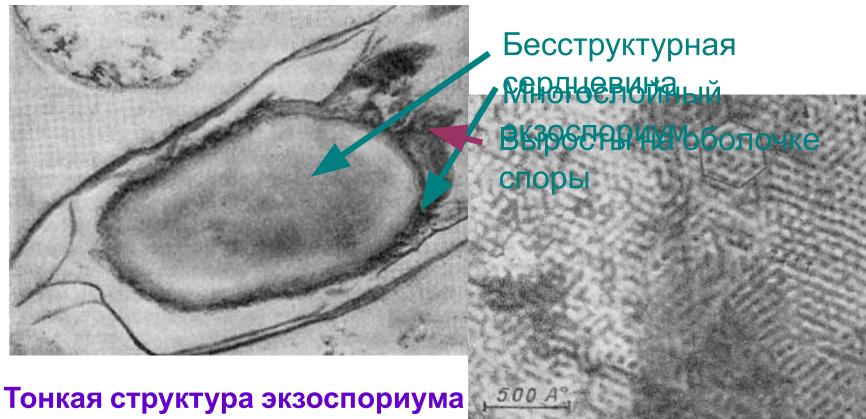

- На четвертой стадии споруляции образуется кортикальный слой (кортекс) между внутренней и внешней мембранами проспоры.
- На пятой стадии закладывается оболочка споры, на некотором расстоянии от внешней мембраны проспоры в цитоплазме материнской клетки в виде чешуек.
- На шестой стадии отдельные листки оболочки удлинняются и сливаются, образуя сплошной непрерывный плотный слой.

Кортекс

- Состоит из мукопептидов, сходных с мукопептидами клеточных стенок.
- Содержит диаминопимелиновую кислоту
- Играет защитную роль.
- Предохраняет сердцевину от действия литических ферментов.

• В больших количествах дипиколиновая кислота с Ca²⁺ и Mg²⁺

Строение оболочки спор у различных видов анаэробных бактерий: Э – экзоспориум, О – оболочка споры

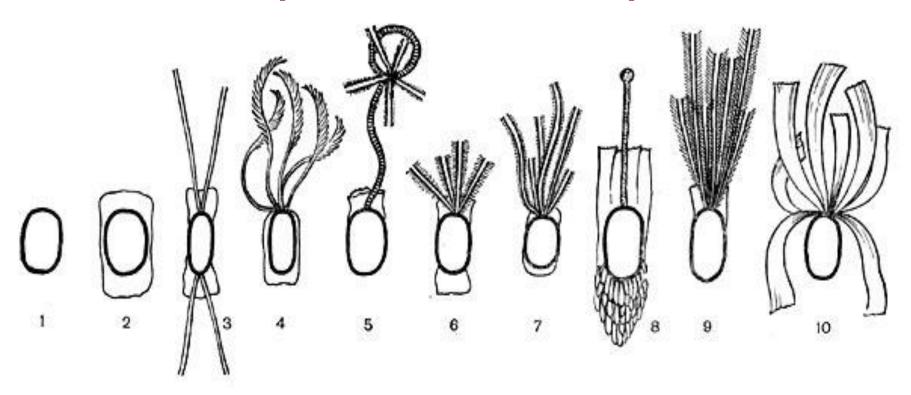

Оболочка или покровы

- Состоит из белковых веществ, обогащенных цистином.
- Объем достигает 50% от всего объема споры.
- Не чувствительная к действию литических ферментов.
- Выполняет защитную функцию, предохраняет споры от преждевременного прорастания.

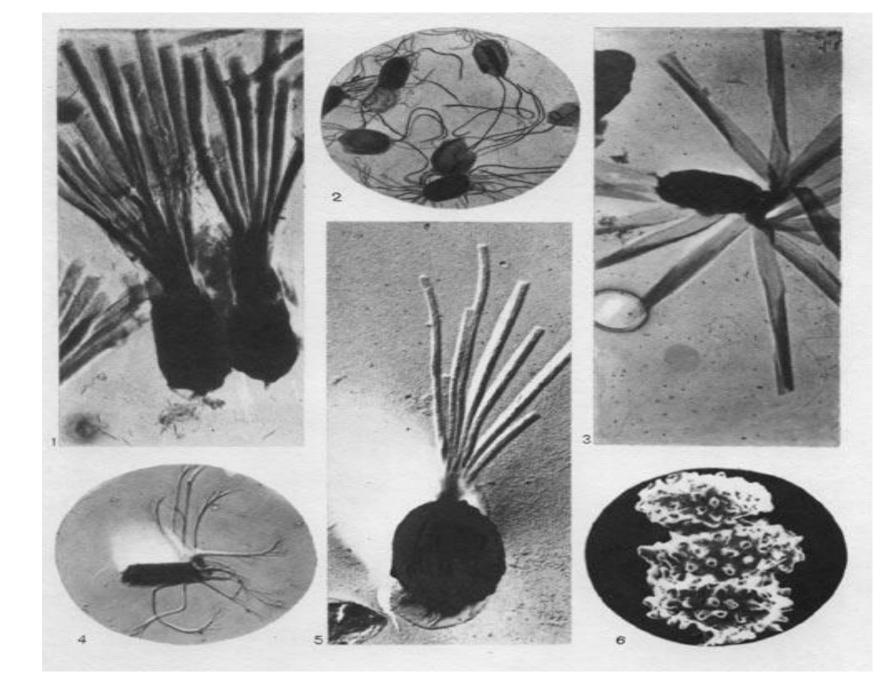
Экзоспориум

- Находится поверх споровой оболочки.
- Имеет вид чехла, часто многослоен.
- Возникает на ранней стадии формирования споры в виде пузырька на внешней стороне мембраны проспоры.
- Чехол не цельный, имеет крупные поры.
- Играет роль барьера, регулирующего проникновение веществ в спору.

Зрелая спора *Clostridium penicillium.* Увел. X 45 000

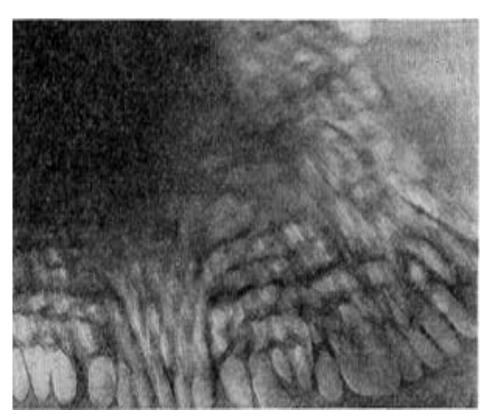


у Cl. bifermentans.
Видны отдельные светлые субъ-


единицы и гексагональные

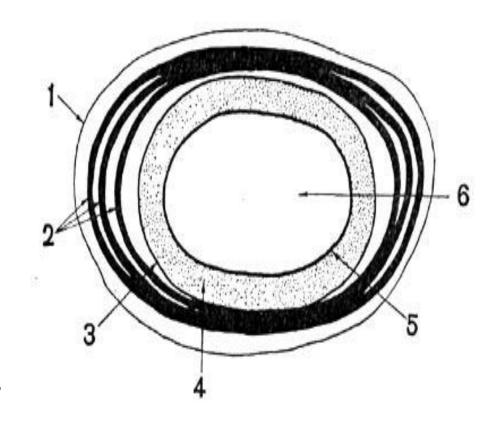
"UUNTKN"

Выросты на спорах


- 1. споры без выростов и экзоспориума,
- 2. споры с экзоспориумом в виде чехла,
- 3-10 споры с выростами различных

- Выросты на спорах строго специфичный наследственно закрепленный, очень устойчивый признак.
- Могут иметь форму метелок, тонких нитей или жгутиков, трубок различной толщины, разбросанных по всей поверхности споры или собранных в пучок, длинных широких лент, шипов, булавок и образований наподобие оленьих рогов.
- Появляются на ранней стадии формирования проспоры перед закладкой кортекса и оболочки.

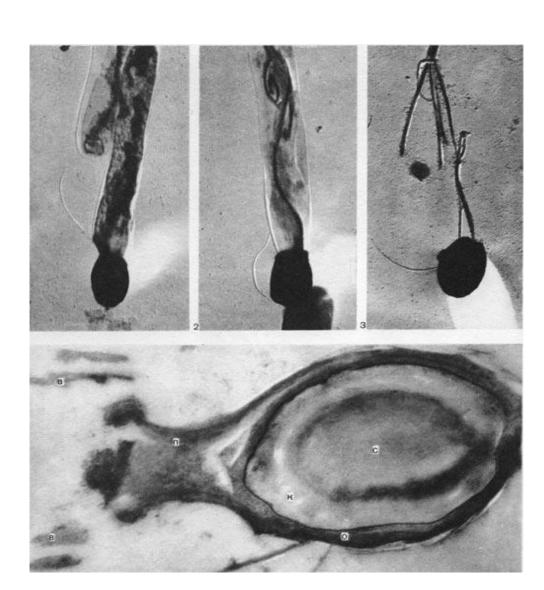
- Выросты состоят в основном из белка.
- Обнаружено 18 различных аминокислот, полисахариды и липиды.
- Белок близок к кератину, актину и коллагену.
- Имеют гидрогеназную активность.


Колпачки на спорах

У клостридиального и бациллярного типа клеток имеют конусовидную форму, на Спорах плектридиев серповидную. Имеют ячеистое строение и образуют сотовидную

Ячейки – это электронно-прозрачные мешочки, заполненные газообразным веществом (газовые вакуоли).

• После созревания споры происходит лизис материнской вегетативной клетки и спора выходит в среду это седьмая стадия



Прорастание спор

- Три стадии:
- Активация

• Инициация

• Вырастание

Литератиру

- «Общая микробиология» М.Х. Шигаева, В.Л. Цзю
- М.В.Гусев, Л.А.Минеева © 1992-2001 Кафедра клеточной физиологии и иммунологии биологического факультета МГУ им. М.В.Ломоносова © 2000-2001