тема лекции:

«АЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ»

План:

- 1. Изомерия органических соединений
- 2. Алканы
- 3. Алкены
- 4. Алкадиены
- 5. Алкины

1. Изомерия органических соединений

Изомерия - это явление существования веществ, имеющих одинаковый качественный и количественный состав, одинаковую молекулярную формулу, но разное строение, а потому, обладающих разными свойствами.

Структурная изомерия

-изомерия углеродной цепи - изомеры отличаются друг от друга порядком связи атомов углерода в цепи C_4H_{10} :

Атом углерода, соединенный с одним углеродным атомом, называется первичным (п), с двумя-вторичным (в), с тремя-третичным (т), с четырьмя-четвертичным (ч).

-изомерия положения функциональных групп

-изомерия положения кратных связей (при одинаковой углеродной цепи):
$$CH_2$$
= CH - CH_2 - CH_3 CH_3 - CH = CH - CH_3 бутен-1

-таутомерия- изомеры, находясь в динамическом равновесии самопроизвольно превращаются друг в друга путем перемещения атомов и связей внутри молекулы

спирт

- межклассовая (молекулы различных классов имеют одинаковую молекулярную формулу, но разный порядок связей)

 C_2H_6O : CH_3 - CH_2 -OH этанол CH_3 -O- CH_3 метиловый эфир, метоксиметан

Пространственная изомерия

- геометрическая изомерия: определяется невозможностью вращения углеродных атомов, связанных кратными связями. Различают цис- и транс-изомеры.

В молекуле цис-изомера одинаковые заместители при разных углеродных атомах, соединенных кратными связями, расположены по одну сторону плоскости молекулы или цикла (в молекуле транс-изомера- по разные стороны):

$$H_3C$$
 $C = C$ H C_2H_5 транс-пентен-2

обусловлена оптическая изомерия пространственной ассиметрией молекул и характерна соединений, содержащих хиральный ассиметрический центр (атом углерода, соединенный с четырьмя различными заместителями - \mathbf{C}^*). Такие молекулы при одинаковом химическом строении не могут быть совмещены в пространстве ни при каких поворотах и часто относятся друг к другу как предмет и его зеркальное отражение.

2. Алканы (насыщенные, предельные углеводороды или парафины) — состоят из атомов С и H, соединённых между собой простыми σ - связями и не содержат циклов.

Гомологический ряд алканов имеет общую формулу C_nH_{2n+2} (n – число атомов углерода).

Гомологический ряд: в ряду алканов, каждый последующий член отличается от предыдущего на группу атомов -CH₂- (гомологическая разность). Имея одинаковый качественный состав и однотипные химические связи, гомологи обладают сходными химическими свойствами.

Гомологический ряд алканов

Алканы				Радикалы	
C_nH_{2n+2}				(алкилы), _n H _{2n+1}	
Формула		Название	Число изомеров	Формула	Название
Молекулярная	Упрощенная структурная		•		
CH ₄	CH ₄	Метан	1	CH ₃ -	Метил
C_2H_6	CH ₃ - CH ₃	Этан	1	C ₂ H ₅ -	Этил
C_3H_8	$CH_3 - CH_2 - CH_3$	Пропан	1	C ₃ H ₇ -	Пропил
C_4H_{10}	$CH_3 - (CH_2)_2 - CH_3$	Бутан	2	C ₄ H ₉ -	Бутил
C_5H_{12}	$CH_{3} - (CH_{2})_{3} - CH_{3}$	Пентан	3	C ₅ H ₁₁ -	Пентил
C_6H_{14}	CH ₃ - (CH ₂) ₄ - CH ₃	Гексан	5	C ₆ H ₁₃ -	Гексил
C_7H_{16}	$CH_3 - (CH_2)_5 - CH_3$	Гептан	9	C ₇ H ₁₅ -	Гептил
C_8H_{18}	$CH_3 - (CH_2)_6 - CH_3$	Октан	18	C ₈ H ₁₇ -	Октил
C_9H_{20}	$CH_3 - (CH_2)_7 - CH_3$	Нонан	35	C ₉ H ₁₉ -	Нонил
$C_{10}H_{22}$	$CH_3 - (CH_2)_8 - CH_3$	Декан	75	C ₁₀ H ₂₁ -	Декил
					(децил)

Изомерия: при содержании в цепи 4-х и более атомов углерода проявляется *структурная* изомерия; от семи и более, возможна оптическая (зеркальная) изомерия.

Физические свойства: $CH_4 - C_4H_{10}$ — газы без цвета и запаха, $C_5H_{12} - C_{15}H_{32}$ — жидкости без цвета с «бензиновым запахом», далее — бесцветные твердые вещества. Алканы имеют низкие $t_{\text{кип и}}$ $t_{\text{пл,}}$ которые увеличиваются с возрастанием молекулярной массы, имеют небольшую плотность, не растворяются в воде, растворимы в неполярных растворителях (бензин, этиловый эфир и др.)

Химические свойства

Название «парафины» обозначает химическую пассивность алканов. Основной тип реакций — радикальное замещение (S_R) , в которое легче всего вступают атомы водорода при **третичном** атоме C, затем при вторичном, а сложнее всего - при первичном атоме углерода.

- 1) Реакции замещения (нитрование, сульфирование, галогенирование):
- реакция нитрования (реакция Коновалова):

- галогенирование (хлорирование, бромирование):

Стадия 1 — зарождение цепи - появление в зоне реакции свободных радикалов: $Cl_2 \xrightarrow{h\nu} 2Cl$ •

Стадия 2 — рост (развитие) цепи. Свободные радикалы, взаимодействуя с молекулами, порождают новые радикалы и развивают цепь превращений:

$$Cl^{\bullet} + CH_{4} \longrightarrow HCl + {}^{\bullet}CH_{3}$$

 ${}^{\bullet}CH_{3} + Cl_{2} \longrightarrow CH_{3}Cl + Cl^{\bullet}$ и т.д.

Стадия 3 — обрыв цепи. Радикалы, соединяясь друг с другом, образуют молекулы и обрывают цепь превращений:

$$CH_3$$
 + •Cl \longrightarrow CH_3 Cl CH_3 + •CH₃— CH_3

Например, общая схема реакции бромирования пропана имеет вид:

$$CH_3-CH_2-CH_3+Br_2\xrightarrow{hv}CH_3-CH-CH_3+HBr_2-бромпропан$$

2) Реакции окисления — в мягких условиях алканы устойчивы к окислению, при $t > 300^{\circ}$ С воспламеняются и сгорают с образованием CO_2 и H_2O : $C_nH_{2n+2} + \frac{3n+1}{2}O_2 \longrightarrow nCO_2 + (n+1)H_2O + Q$ $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

3) Пиролиз (включает разложение и др. превращения химических соединений при высоких температурах).

$$2CH_{4} \xrightarrow{600-900^{\circ}C} CH_{2} = CH_{2} + 2H_{2}$$
 этен, этилен $2CH_{4} \xrightarrow{1000^{\circ}C} HC \equiv CH + 3H_{2}$ ацетилен $2H_{4} \xrightarrow{1100-1600^{\circ}C} C + 2H_{2}$

4) Крекинг (расщепление) при температурах менее 600°C

$$CH_3$$
- CH_2 - CH_3 - CH_3 - CH_2 = CH_2 + CH_3 - CH_3

4) Изомеризация - перестройка углеродного скелета углеводородов нормального строения с образованием алканов разветвленного строения при нагревании и под влиянием катализаторов:

$$CH_3$$
- CH_2 - CH_2 - CH_3 CH_3 - CH - CH_2 - CH_3 пентан CH_3 2 -метилбутан

5) Реакция риформинга - превращение алканов в ароматичесие углеводороды при нагревании в присутствии катализатора.

Например:
$$C_6H_{14} \rightarrow C_6H_6 + 4H_2$$
 гексан бензол

6) Каталитическое дегидрирование:

$$CH_3-CH_3 \xrightarrow{800^{\circ}C} CH_2 = CH_2 + H_2$$

Способы получения алканов

1) Крекинг нефти (промышленный способ)

$$C_8H_{18} \rightarrow C_4H_{10} + C_4H_8$$
 октан бутан бутан бутан

2) Гидрирование (восстановление) непредельных углеводородов (лабораторный метод):

$$C_nH_{2n}$$
 — H_2 — C_nH_{2n+2} — C_nH_{2n-2} — $ANKAH BI$ — ANI — ANI

3) Восстановление галогенпроизводных алканов:

$${
m CH_3\text{-}CH_2\text{-}I + HI}_{
m (конц.)} \longrightarrow {
m CH_3\text{-}CH_3} + {
m I_2}$$
 йодэтан этан

$$CH_3$$
- CH_2 - Cl_2 - Cl_3 + Cl_3 - CH_3 - CH_3 - Cl_3 -

4) Синтез сложных алканов из галогенопроизводных с меньшим числом атомов углерода (реакция Вюрца):

$$2CH_3Cl + 2Na \longrightarrow CH_3-CH_3 + 2NaCl$$
 хлорметан этан

5) Газификация твердого топлива (при повышенной температуре и давлении, kat- Ni:

$$C + 2H_2 \rightarrow CH_4$$

6) Из синтез-газа (СО + Н₂) получают смесь алканов:

$$nCO + (2n+1)H_2 \longrightarrow C_nH_{2n+2} + nH_2O$$

- 7) Из солей карбоновых кислот:
- а) сплавление со щелочью (реакция Дюма)

$$CH_3COONa + NaOH \xrightarrow{t^o} CH_4 + Na_2CO_3$$
 ацетат натрия

б) электролиз по Кольбе:

$$2RCOONa + 2H_2O \xrightarrow{3ЛЕКТРОЛИЗ} R-R + 2CO_2 + H_2 + 2NaOH$$
 на аноде на като де

8) Разложение карбидов металлов (метанидов)

$$Al_4C_3 + 12H_2O \longrightarrow 4Al(OH)_3\downarrow + 3CH_4\uparrow$$

3. Алкены (этиленовые углеводороды, олефины) - ненасыщенные углеводороды, содержащие в молекуле двойную (этиленовую) связь.

Общая формула C_nH_{2n}.

Пример номенклатуры:

$${}^{6}\text{CH}_{3}$$
 - ${}^{5}\text{CH}$ - ${}^{4}\text{CH}_{2}$ - ${}^{3}\text{CH}$ = ${}^{2}\text{CH}$ - ${}^{1}\text{CH}_{3}$ | CH₃ 5-метилгексен-2

Изомерия:

- структурная: определена строением (разветвлением) углеродной цепи и положением двойной связи в цепи;
- геометрическая (цис-транс-изомерия), обусловлена строением двойной связи.

Физические свойства: C_2H_4 - C_4H_8 - газы, с C_5H_{10} - низкокипящие жидкости, с $C_{18}H_{36}$ - твердые вещества. Жидкие алкены и многие их производные называют олефинами, т.к. являются маслянистыми веществами (от лат. oleum — растительное масло). Алкены практически не растворимы в воде, хорошо растворяются в органических растворителях. Все олефины имеют плотность < 1.

Химические свойства алкенов обусловлены присутствием в их молекулах двойной связи, которая представляет собой комбинацию σ - и π - связей. Атомы углерода, соединенные двойной связью, находятся в sp²-гибридизованном состоянии.

 π -связь менее прочная, чем σ -связь, поэтому для алкенов характерны реакции **присоединения** по месту разрыва энергетически более слабой π -связи.

1). Реакции присоединения

- гидрирование (восстановление, гидрогенизация):

$$H_2C=CH_2+H_2 \xrightarrow{Ni} H_3C-CH_3+137$$
кДж этилен этан

-галогенирование - присоединие галогенов с образованием вицинальных дигалогеналканов.

Реакционная способность галогенов резко уменьшается в ряду $F_2 > Cl_2 > Br_2 > J_2$. Фторирование алкенов сопровождается возгоранием, йод реагирует медленно на солнечном свету.

$$H_2C=CH_2 + Br_2 \rightarrow Br - CH_2 - CH_2 - Br$$
 этен 1,2-дибромэтан

Обесцвечивание бромной воды - качественная реакция на двойную связь.

- гидрогалогенирование - реакция присоединения HHal (Hal - Cl, Br, J, F) к непредельным соединениям, подчиняется правилу Марковникова: в случае несимметрично построенных олефинов водород предпочтительнее присоединяется к наиболее гидрогенизированному из ненасыщенных атомов углерода, а галоген — к другому ненасыщенному углеродному атому.

$$CH_3$$
- $CH=CH_2 + H-C1 \rightarrow CH_3$ - $CH-CH_3$ пропилен | C1

2-хлорпропан

Скорость присоединения галогенводородов к алкенам уменьшается в ряду HJ>HBr>HCl>HF.

Против правила Марковникова присоединяется к алкенам HBr, если реакцию осуществлять в присутствии O_2 воздуха, перекисей или др. источников свободных радикалов (перекисный эффект Караша):

- гидратация - реакция присоединения воды (kat- H_2SO_4 , H_3PO_4 и др.):

+HOH $H_2C=CH_2+H-OSO_3H \longrightarrow H_3C-CH_2-OSO_3H \longrightarrow$ H_3C-CH_2-OH этилен +HOH $-H_2C=CH_2+H-OSO_3H \longrightarrow H_3C-CH_2-OSO_3H \longrightarrow$ $-H_2SO_4$ этилен

$$H_2C=CH_2+HOH \xrightarrow{H_2SO_4} H_3C-CH_2-OH$$
 этен

- алкилирование - присоединение алканов к этиленовой связи, в мягких условиях в присутствии кислотных катализаторов $(H_2SO_4, H_3PO_4, HF, AlCl_3,$ ВГ₃ и т.д.). Алкилированием алкенов синтезируют углеводороды преимущественно с разветвленной структурой, которые используются как моторное топливо (например, синтез авиационного бензина). Так, 2,2,4-триметилпентан (изооктан), который имеет высокое октановое число, получают алкилированием изобутилена (2-метилпропена) изобутаном (2метилпропаном):

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8

- оксосинтез (гидроформилирование) — присоединение водяного газа (СО+H₂), в результате которого образуются преимущественно альдегиды. Реакцию проводят под давлением при нагревании в присутствии карбонилов кобальта или никеля (метод Реппе).

Из гомологов этилена этим методом получают смесь альдегидов с нормальной и разветвленной углеродной цепью:

$$\begin{array}{c} \text{R-CH=CH}_2\text{+CO+H}_2 \longrightarrow \text{R-CH}_2\text{-CH}_2\text{-CHO} \ + \ \text{R-CH-CHO} \\ & | \\ & | \\ \text{CH} \end{array}$$

-реакции окисления (O_2 (воздуха), O_3 (озон), Ag_2O_3 , $KMnO_4$, CrO_3 , H_2O_2 , и др.) используют в промышленных синтезах и для установления месторасположения двойных связей. Целенаправленным окислением алкенов в промышленности получают двухатомные спирты, альдегиды, карбоновые кислоты и др. кислородосодержащие соединения.

а) окисление без разрыва связей: при каталитическом окислении кислородом воздуха разрываются только π-связь, и по месту разрыва присоединяется атом кислорода. Продукты окисления - трехчленные циклические простые эфиры, которые называют оксиранами, эпоксисоединениями, или α-оксидами.

оксид этилена

б) окисление в **мягких условиях** – по месту разрыва π -связи присоединяются две гидроксигруппы, с образованием двухатомных спиртов – гликолей. Реакция окисления алкенов разб. раствором КМпО₄ на холоде в щелочной среде (реакция Вагнера, 1898 г.): $3\text{CH}_2 = \text{CH}_2 + 2 \text{ KMnO}_4 + 4 \text{ H}_2\text{O} \rightarrow 3\text{H}_2\text{C-CH}_2 + 2 \text{ MnO}_2 \downarrow + 2$

KOH

 в) жесткое окисление с разрывом связей (при нагревании, увеличении концентрации окислителя, в кислой среде):

$$H_3$$
С-СH=CH-CH $_2$ -С H_3 М $_2$ О $_4$ H_3 С-СООН + H_3 С-СH $_2$ -СООН H^+ , t° С уксусная пропионовая кислота

г) озонирование (озонолиз): озон присоединяется к двойной связи с одновременным его разрывом и образованием циклических перекисных соединений (озонидов), которые не выделяют в чистом виде, а разлагают, гидролизуя водой. При этом образуются карбонильные соединения, по строению которых можно установить положение двойной связи в молекуле алкена.

Например:

2. Реакции замещения

Пример: при термическом хлорировании (450-500°C) пропилена образуется хлористый аллил (3-хлорпропен-1, $t_{\text{кип}} = 45^{\circ}\text{C}$). Реакция осуществляется по радикальному механизму замещения (S_{R}):

$$C1 \cdot C1 \rightarrow 2C1$$

$$H_2C=CH-CH_3 + Cl \longrightarrow H_2C=CH-CH_2 + HCl$$

$$\mathbf{H_2C=CH-CH_2}$$
 + $\mathbf{Cl\cdot\cdot Cl}$ $\rightarrow \mathbf{H_2C=CH-CH_2Cl}$ + $\mathbf{Cl\cdot}$ хлористый

аллил

3. Реакции полимеризации — химические реакции образования полимера (высокомолекулярного соединения) за счет объединения между собой большого количества молекул непредельных соединений (мономеров) ковалентными связями, возникающими за счет разрыва кратных π -связей в молекулах мономера. Побочные низкомолекулярные продукты в результате реакции не выделяются.

В химии полимеров широко используют совместную полимеризацию нескольких разных мономеров, которую называют сополимеризацией.

По характеру прохождения реакции полимеризации бывают двух типов — ступенчатая и цепная (линейная); могут быть проведены по ионному (катионная и анионная) и радикальному механизмам.

Инициаторы - тепловая энергия, давление, облучение и специальные химические реагенты.

Примеры линейной полимеризации:

$$n CH_2 = CH_2 \rightarrow (-CH_2 - CH_2 -)_n$$

этилен полиэтилен $n CH_3 - CH = CH_2 \rightarrow (-CH - CH_2 -)_n$ $|$ $|$ CH_3

пропилен полипропилен

Полимеризация однозамещенных производных этилена может быть изображена общей схемой:

$$\begin{array}{ccc} n \ H_2C=CH \ \rightarrow \ (-H_2C-CH-)_n \\ & | & | \\ R & R \end{array}$$

мономер полимер

n — степень полимеризации (при n = 2,3,4...10 соединения называют олигомерами);

R — заместители (H, Cl или группы CH $_3$ -, -C≡N, С $_6$ H $_5$ - и т. д.).

Способы получения

1) Дегидратация спиртов

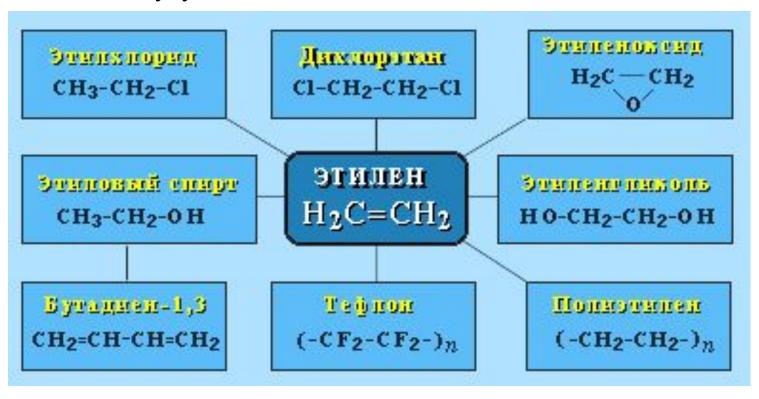
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_7 CH_8 CH_8

Правило Зайцева - отщепление атома водорода в реакциях дегидрогалогенирования и дегидратации происходит преимущественно от наименее гидрированного (гидрогенизированного) атома углерода.

2) Дегидрогалогенирование галогеналканов (реакция элиминирования):

СН₃-СН-СН-СН₃ + КОН
$$\stackrel{t^0}{\to}$$
 СН₃-СН=СН-СН₃ + КСІ +Н₂О $\stackrel{t^0}{\longleftarrow}$ СПирт. p-p) бутен-2 2-хлорбутан

3) Дегидрирование алканов:


4) Дегалогенирование дигалогенопроизводных алканов:

1,2-дибромэтана

Применение алкенов

Алкены применяются в качестве исходных продуктов в производстве полимерных материалов (пластмасс, каучуков, пленок) и других органических веществ. Пропилен (пропен) $H_2C=CH_2-CH_3$ и бутилены (бутен-1 и бутен-2) используются для получения спиртов и полимеров.

Изобутилен (2-метилпропен) $H_2C=C(CH_3)_2$ применяется в производстве синтетического каучука.

4. Диеновые углеводороды (алкадиены) - углеводороды, содержащие в молекуле две двойные связи.

Общая формула C_nH_{2n-2} . Классификация

По взаимному расположению двойных связей и по химическим свойствам:

- с кумулированными связями диены с соседним расположением двойных связей (мало устойчивы): $H_2C=C=CH_2$ (аллен)
- с изолированными связями диены, у которых двойные связи разделены более чем одной простой связью: $H_2C=CH-CH_2-CH=CH_2$ (диаллил, гексадиен-1,5)
- с сопряженными связями диены, у которых двойные связи разделены одной простой связью: $H_2C=CH-CH=CH_2$ (бутадиен-1,3).

Номенклатура

- структурная изомерия (изомерия углеродного скелета и изомерия, обусловленная относительным расположением двойных связей);
- пространственная (цис-, транс-);
- -межклассовая изомерия (алкины и циклоалкены).

Приведите для данного соединения по одному изомеру на каждый вид изомерии.

Физические свойства: наибольшее практическое значение имеет дивинил (легко сжижающийся газ, $t_{\text{кип}} = -4,5^{\circ}\text{C}$) и изопрен (жидкость, $t_{\text{кип}} = 34^{\circ}\text{C}$).

Химические свойства

Рассмотрим особенность реакций присоединения для диеновых углеводородов с сопряженными связями.

1. Реакции присоединения:

-гидрирование (идет в положения 1,4):

Ni
$$H_2C=CH-CH=CH_2+H_2 \longrightarrow H_3C-CH=CH-CH_3$$
 дивинил, бутадиен-1,3 бутен-2

При полном гидрировании образуется бутан:

$$CH_2 = CH - CH = CH_2 + 2H_2 \xrightarrow{Ni, t, p} CH_3 - CH_2 - CH_2 - CH_3$$

-галогенирование (1,4-присоединение):

1,4-дибромбутен-2

При взаимодействии с алкадиенами красно-бурый раствор брома в воде (бромная вода) обесцвечивается - качественная реакция на двойную связь.

Побочным продуктом бромирования дивинила является 3,4-дибромбутен-1:

$$CH_2$$
= CH - CH = CH_2 + Br_2 \longrightarrow CH_2 - CH - CH = CH_2
 $\begin{vmatrix} & & & \\$

При полном бромировании дивинила образуется 1,2,3,4тетрабромбутан:

-гидрогалогенирование (1,4-присоединение):

 $H_2C=CH-CH=CH_2$ + HCl \longrightarrow $H_3C-CH=CH-CH_2Cl$ + $H_3C-CH=CH-CH_2Cl$ 1 yyanfyyny 2

В небольшом количестве образуется и 3-хлорбутен-1.

2. Полимеризация алкадиенов протекает преимущественно по 1,4-механизму, при этом образуется полимер с кратными связями, называемый каучуком.

Продукт полимеризации дивинила (бутадиена) называется искусственным каучуком:

$$nCH_2$$
= CH - CH = CH_2 \longrightarrow $(-CH_2$ - CH = CH - CH_2 - $)_n$

При полимеризации изопрена образуется природный (натуральный) каучук

$$nCH_2 = C - CH = CH_2 \longrightarrow \left(-CH - CH = CH - CH_2 - \right)_n$$

$$CH_3 \qquad CH_3$$

Инициаторы процесса - каt, ультрафиолетовое облучение.

3. Окисление

- мягкое окисление протекает при низкой температуре в присутствии перманганата калия, раствор которого при этом обесцвечивается. Обесцвечивание алкадиенами водного раствора КМпО₄, как и в случае алкенов – качественная реакция на двойную связь.

В молекуле алкадиена разрываются **только \pi-связи** и окисляются атомы углерода при двойных связях. При этом образуются четырехатомные спирты:

$$3CH_2 = CH - CH = CH_2 + 4KMnO_4 + 8H_2O \xrightarrow{0^{\circ}C} 3CH_2 - CH - CH - CH_2 + 4MnO_2 + 4KOH$$

- жесткое окисление: под действием перманганатов или соединений хрома (VI) происходит полный разрыв двойных связей С=С и связей С-Н у атомов углерода при двойных связях. При этом у окисляемых атомов углерода образуются связи с атомами кислорода.

Например, при окислении бутадиена-1,3 KMnO₄ в кислой среде возможно образование щавелевой кислоты и углекислого газа:

$$CH_2 = CH - CH = CH_2 + 4KMnO_4 + 6H_2SO_4 \longrightarrow 2CO_2 + 0C - C + 2K_2SO_4 + 4MnSO_4 + 8H_2O$$

4. Горение

$$C_nH_{2n-2} + (3n-1)/2O_2 \rightarrow nCO_2 + (n-1)H_2O + Q$$

Например, уравнение сгорания бутадиена:

$$2C_4H_6 + 11O_2 \rightarrow 8CO_2 + 6H_2O$$

5. Алкины (ацетиленовые углеводороды) - непредельные углеводороды, молекулы которых содержат тройную связь. **Общая формула** C_nH_{2n-2} .

Структурная изомерия:

- изомерия положения тройной связи (начиная с C_4H_6):

$$CH \equiv C - CH_2 - CH_3$$
 $CH_3 - C \equiv C - CH_3$ бутин-1 бутин-2

- изомерия углеродного скелета (начиная с C_5H_8):

$$CH \equiv C - CH_2 - CH_2 - CH_3$$
 $CH \equiv C - CH - CH_3$ CH_3 CH_3 3 -метилбутин- l

- межклассовая изомерия с алкадиенами и циклоалкенами, начиная с C_4H_6 :

$$\mathrm{CH}\equiv\mathrm{C-CH_2-CH_3}$$
 $\mathrm{CH_2=CH-CH=CH_2}$ $\mathrm{CH}=\mathrm{CH}$ $\mathrm{CH_2-CH_2}$ $\mathrm{CH_2-CH_2}$ бутин-1 бутадиен-1,3 циклобутен

Физические свойства: при обычных условиях алкины C_2H_2 - C_4H_6 — газы, C_5H_8 - $C_{16}H_{30}$ — жидкости, с $C_{17}H_{32}$ — твердые вещества. $t_{\text{кип}}$ и $t_{\text{пл}}$ алкинов выше, чем у соответствующих алкенов и увеличиваются с ростом их молекулярной массы.

Химические свойства обусловлены наличием в тройной связи, которая состоит из одной σ - и двух π -связей (sp-гибридизация).

1. Реакции присоединения:

- гидрирование

$$CH_3$$
- $C\equiv C$ - CH_3^2 , Ni CH_3 - $CH=CH$ - CH_3^2 , Ni CH_3 - CH_2 - CH_2 - CH_3 - $CH_$

- галогенирование (хлорирование проводят в жидкой фазе, в растворе тетрахлорэтана в присутствии $SbCl_{3}$):

Сl
$$+$$
HCl $+$ HCl $|$ $+$ HCl $|$ HCl $|$ $+$ HCl $|$

- гидратация (реакция Кучерова, 1881 г.):

- присоединение спиртов, карбоновых кислот и др. реагентов в присутствии катализатора:

НС≡СН + НО-СН
$$_2$$
-СН $_3$ \rightarrow Н $_2$ С=СН-О-СН $_2$ -СН $_3$ винилэтиловый эфир (простой) Н $_3$ РО $_4$ НС≡СН + НООС-СН $_3$ \rightarrow Н $_2$ С=СН-О-СО-СН $_3$ уксусная кислота винилацетат
$$\begin{array}{c} \text{Сu}_2(\text{CN})_2 \\ \text{НС} \end{array}$$
 НС≡СН + НСN \rightarrow Н $_2$ С=СН-СN акрилонитрил

2. Реакции замещения

- образование ацетиленидов с K, Na, NaNH $_2$: H-C=C-H + 2K \rightarrow K-C=C-K +H $_2$ ацетиленид калия

Вода разлагает ацетилениды: $Na-C\equiv C-Na + 2H-OH \rightarrow H-C\equiv C-H + 2NaOH$ ацетиленид натрия

Ацетилен и алкины-1 образуют с растворами меди (I) или серебра нерастворимые в воде ацетилениды меди красно-коричневого цвета и ацетилениды серебра белого цвета (качественная реакция на тройную связь):

H-C≡C-H + 2[Cu(NH
$$_3$$
) $_2$]OH → Cu-C≡C-Cu↓ +4NH $_3$ +2H $_2$ O ацетиленид меди

H-C≡C-H + 2[Ag(NH
$$_3$$
) $_2$]OH → Ag-C≡C-Ag↓ +4NH $_3$ +2H $_2$ O ацетиленид серебра

Ацетилениды серебра и меди и других тяжелых металлов в сухом состоянии неустойчивы и разлагаются со взрывом.

3. Взаимодействие с альдегидами и кетонами

При взаимодействии альдегидов с ацетиленом образуются вторичные спирты (алкинолы):

Назовите

Взаимодействие со второй молекулой уксусного альдегида приводит к образованию алкиндиола:

OH OH Cu-C=C-Cu
$$\mid$$
 CH₃-CH-C=C-CH-CH₃

4. Реакции окисления

Алкины более устойчивы к действию обычных окислителей, чем алкены. Окисление $KMnO_4$ приводит к разрыву тройных связей и образованию карбоновых кислот:

Ацетилен на воздухе горит коптящим пламенем, а в струе кислорода сгорает полностью и образует при этом температуру до 2800°C, что используется в технике в автогенной сварке металлов:

$$2HC \equiv CH + 5O_2 \rightarrow 4CO_2 + 2H_2O$$

5. Реакции изомеризации (реакция Фаворского)

КОН(спирт. p-p)
$$CH_3$$
-CH $_2$ -C \equiv CH
 t^o C
 CH_3 -C \equiv C-CH $_3$
 CH_3 -C \equiv C-CH $_3$

6. Реакции полимеризации:

- циклическая (Н.Д.Зелинский и Б.А. Казанский, 1924-1930гг.-получение бензола):

- линейная (Ю. Ньюленд):

хлоропрен

Хлоропрен – мономер для производства хлопренового каучука.

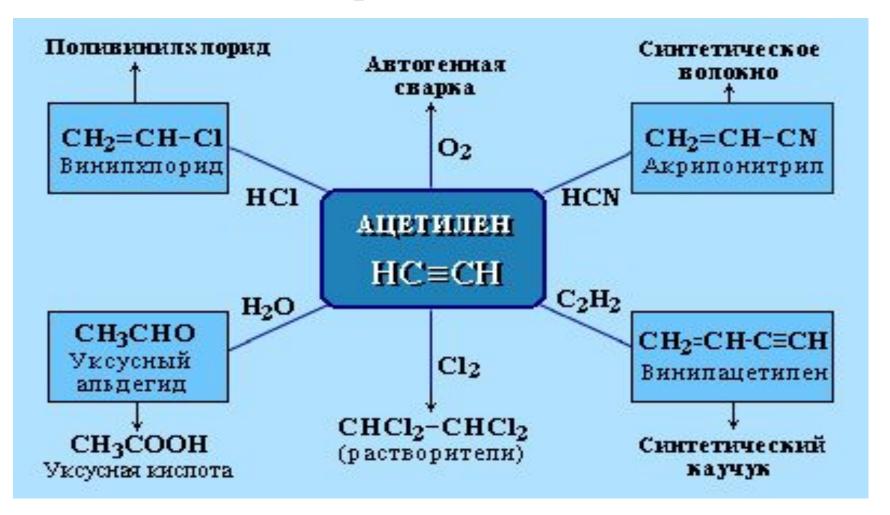
Способы получения

1. Карбидный метод (Ф. Велер, 1862 г.):

2. Окислительный пиролиз метана (промышленный метод):

Получение гомологов ацетилена

1 Дегидрогалогенирование дигалогеналканов:


$$H_3$$
C-CH-CH $_2$ ------ H_3 C-C \equiv CH + 2KCl + 2 H_2 O | t,°C пропин Br Br

2. Дегалогенирование тетрагалогенопроизводных алканов с порошкообразным цинком:

3. Алкилирование ацетиленидов щелочных металлов:

$$H_3C-C\equiv C-Na+I-CH_3 \to H_3C-C\equiv C-CH_3+NaI$$
 метилацетилинид бутин-2 натрия

Применение

Винилацетилен - важный промежуточный продукт в производстве масло- и бензостойкого синтетического хлоропренового каучука:

$$\mathrm{CH}\equiv\mathrm{C-CH}=\mathrm{CH_2}+\mathrm{HCl}\longrightarrow\mathrm{CH_2}=\mathrm{C-CH}=\mathrm{CH_2}$$
 Cl $X_{noponpeh}$ (2-хлорбутадиен-1,3) $\mathrm{n\,CH_2}=\mathrm{C-CH}=\mathrm{CH_2}\longrightarrow\mathrm{(-CH_2-C}=\mathrm{CH-CH_2-)_n}$ Cl Cl Cl $\mathrm{Honuxnoponpeh}$

Спасибо за внимание!