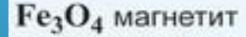

Железо и его соединения//



1s²2s²2p⁶3s²3p⁶ 3d⁶4s² валентные электроны

 $Fe^{0} - 2\bar{e} \rightarrow Fe^{2+}$ $Fe^{0} - 3\bar{e} \rightarrow Fe^{3+}$

в природе

 Fe_2O_3 гематит

FeO вюстит

 FeS_2 пирит

ПРОСТОЕ ВЕЩЕСТВО

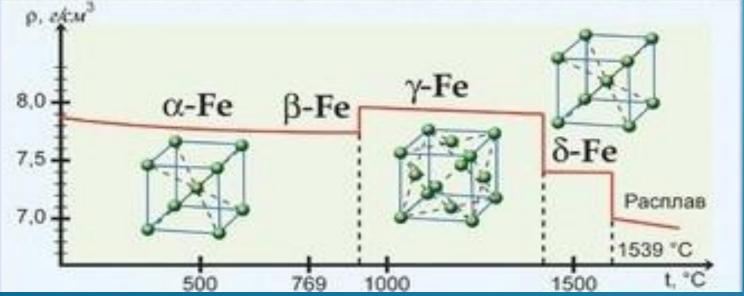
Температура плавления 1539 °C

$$\rho = 7,874 \, \epsilon_{/cM^3}$$

СПЛАВЫ

Fe + C (< 2%) сталь

Fe + C (> 2%) чугун



ХИМИЧЕСКИЕ СВОЙСТВА

 $3Fe + 2O_2 \rightarrow Fe_3O_4$ $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ $Fe + S \rightarrow FeS$ $4Fe + 2NH_3 \xrightarrow{t^*} 2Fe_2N + 3H_2$ $3Fe + 4H_2O \xrightarrow{t^*} Fe_3O_4 + 4H_2$ $Fe + 2HCl \rightarrow FeCl_2 + H_2 \uparrow$ $Fe + CuSO_4 \rightarrow FeSO_4 + Cu$

 $2Fe + KClO_3 \rightarrow KCl + Fe_2O_3$

ИЗМЕНЕНИЕ ПЛОТНОСТИ ЖЕЛЕЗА ПРИ НАГРЕВАНИИ

В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.

- Fe самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».
- При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).
- Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.
 - Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.

	Fe ⁺²	Fe	9 +3	Fe ⁺⁶
Оксиды	FeO основный	Fe ₂ O ₃ основный со слабыми признаками амфотерности		FeO ₃ - не выделен
Гидроксиды	Fe(OH) ₂ слабое основание	Fe(OH) ₃ \leftrightarrow HFeO ₂ + H ₂ O		Н ₂ FeO ₄ кислота, в свободном состоянии не выделена
Соли	FeCl ₂ , FeSO ₄ , Fe(NO ₃) ₂ и др.	Тип I FeCl ₃	Тип II KFeO ₂	K ₂ FeO ₄ BaFeO ₄ SrFeO ₄ ферраты (IV)

Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:

Fe₂O₃
$$\xrightarrow{C(CO)}$$
 Fe₃O₄ $\xrightarrow{C(CO)}$ FeO $\xrightarrow{C(CO)}$ Fe 450-500°C $\xrightarrow{500-600°C}$ 700-800°C

Восстановление происходит постепенно, в 3 стадии:

1)
$$3Fe_2O_3 + CO = 2Fe_3O_4 + CO_2$$

2) $Fe_3O_4 + CO = 3FeO + CO_2$
3) $FeO + CO = Fe + CO_2$

Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.

Очень чистое железо получают одним из способов: а) разложение пентакарбонила Fe

$$Fe(CO)_5 = Fe + 5CO$$

б) восстановление водородом чистого FeO

$$FeO + H_2 = Fe + H_2O$$

в) электролиз водных растворов солей Fe⁺²

$$FeC_2O_4 = Fe + 2CO_2$$
 оксалат железа (II)

Fe - металл средней активности, проявляет общие свойства, характерные для металлов.

Уникальной особенностью является способность к «ржавлению» во влажном воздухе: $4Fe + 6H_2O + 3O_2 = 4Fe(OH)_3$

В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при T > 150°C; при прокаливании образуется «железная окалина» Fe₃O₄:

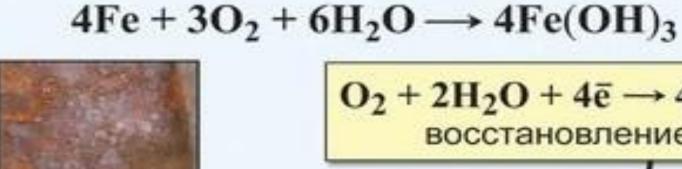
$$3Fe + 2O_2 = Fe_3O_4$$

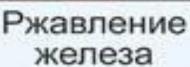
В воде в отсутствие кислорода железо не растворяется.

При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:

3 Fe +
$$4H_2O(Γ) = 4H_2$$

Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Al_2O_3 , этот слой не предохраняет железо от дальнейшего разрушения.


4Cu + 2SO₂ + $+ 2H₂O + 3O₂ \rightarrow$ $\rightarrow 2Cu₂(OH)₂SO₄$



Зеленый налет на бронзе

$$Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_{2}$$

 $4Fe(OH)_{2} + O_{2} + 2H_{2}O \rightarrow 4Fe(OH)_{3}$

НАНЕСЕНИЕ КРАСКИ ИЛИ ПОЛИМЕРА

ОЦИНКОВЫВАНИЕ H2 Zn²+ 2H+ → Zn + Fe 2ē

НАНЕСЕНИЕ ЗАЩИТНОГО СЛОЯ МЕТАЛЛА

Лужение (Sn)
Хромирование (Cr)
Никелирование (Ni)
Серебрение (Ag)
Золочение (Au)

АЗОТИРОВАНИЕ

Соединения с галогенами:

$$2Fe + 3CI2 = 2FeCI3$$

$$2Fe + 3F2 = 2FeF3$$

$$2Fe + 3Br2 = 2FeBr3$$

$$Fe + I2 = FeI2$$

$$Fe + S = FeS$$

Образуются соединения, в которых преобладает ионный тип связи.

Fe + P =
$$Fe_xP_y$$

Fe + C = Fe_xC_y
Fe + Si = Fe_xSi_y

Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)

$$Fe^0 + 2H^+ \rightarrow Fe^{2+} + H_2^{\uparrow}$$

Поскольку Fe располагается в ряду активности левее водорода ($E_{Fe/Fe}^{\circ}$ = -0,44B), оно способно вытеснять H_2 изобычных кислот.

Fe + 2HCI = FeCl₂ + H₂↑
Fe + H₂SO₄ = FeSO₄ + H₂↑
Fe⁰ - 3e⁻
$$\rightarrow$$
 Fe³⁺

Концентрированные HNO_3 и H_2SO_4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения H_2).

В разб. HNO₃ железо растворяется, переходит в раствор в виде катионов Fe³⁺ а анион кислоты восстанавливается до NO*:

Fe + $4HNO_3$ = $Fe(NO_3)_3$ + NO↑ + $2H_2O$ Очень хорошо растворяется в смеси HCl и HNO_3 В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.

Fe₂O₃ - основный оксид с признаками амфотерности I. Основные свойства проявляются в способности реагировать с кислотами:

$$Fe_2O_3 + 6H^+ = 2Fe^{3+} + 3H_2O$$

 $Fe_2O_3 + 6HCI = 2FeCI_3 + 3H_2O$
 $Fe_2O_3 + 6HNO_3 = 2Fe(NO_3)_3 + 3H_2O$

II. Слабокислотные свойства. В водных растворах щелочей Fe₂O₃ не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:

$$Fe_2O_3 + CaO = Ca(FeO_2)_2$$

 $Fe_2O_3 + 2NaOH = 2NaFeO_2 + H_2O$
 $Fe_2O_3 + MgCO_3 = Mg(FeO_2)_2 + CO_2$

III. Fe₂O₃ - исходное сырье для получения железа в металлургии:

 $Fe_2O_3 + 3C = 2Fe + 3CO$ или $Fe_2O_3 + 3CO = 2Fe + 3CO_2$ Получают при действии щелочей на растворимые соли Fe^{3+} :

 $FeCl_3 + 3NaOH = Fe(OH)_3 + 3NaCI$

В момент получения Fe(OH)₃ - красно-бурый слизистоаморфный осадок.

Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH)₂:

 $4Fe + 6H_2O + 3O_2 = 4Fe(OH)_3$ $4Fe(OH)_2 + 2H_2O + O_2 = 4Fe(OH)_3$

Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe³⁺.

Fe(OH)₃ - очень слабое основание (намного слабее, чем Fe(OH)₂). Проявляет заметные кислотные свойства. Таким образом, Fe(OH)₃имеет амфотерный характер:

- 1) реакции с кислотами протекают легко: $Fe(OH)_3 + 3HCI = FeCI_3 + 3H_2O$
- 2) свежий осадок Fe(OH)₃ растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:

$$Fe(OH)_3 + 3KOH = K_3[Fe(OH)_6]$$

В щелочном растворе $Fe(OH)_3$ может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H_2FeO_4):

$$2Fe(OH)_3 + 10KOH + 3Br_2 = 2K_2FeO_4 + 6KBr + 8H_2O$$

Наиболее практически важными являются: $Fe_2(SO_4)_3$, $FeCI_3$, $Fe(NO_3)_3$, $Fe(SCN)_3$, $Fe(SCN)_3$, $Fe(CN)_6$.

Характерно образование двойных солей - железных квасцов:

 $(NH_4)Fe(SO_4)_2 \cdot 12H_2O$, $KFe(SO_4)_2 \cdot 12H_2O$

Соли Fe³⁺ часто имеют окраску как в твердом состоянии, так и в водном растворе. Это объясняется наличием гидратированных форм или продуктов гидролиза.

Fe + неметалл $2Fe + 3Cl_2 = 2FeCl_3$

$$2.Fe + кислота$$
 $Fe + 4HNO_{3 pa36} = Fe(NO_3)_3 + NO + 2H_2O$
 $3. Fe_2O_3 + кислота$
 $Fe_2O_3 + 3H_2SO_4 = Fe_2(SO_4)_3 + 3H_2O$
 $4. Fe(OH)_3 + кислота$
 $Fe(OH)_3 + 3HCI = FeCI_3 + 3H_2O$
 $5. Окисление Fe^{2+}$ до Fe^{3+}
 $2FeCI_2 + CI_2 = 2FeCI_3$
 $2Fe_2O_3 + H_2O_2 + H_2SO_4 = Fe_2(SO_4)_3 + 2H_2O$

$$Fe^{3+} + H_2O = FeOH^{2+} + H^+$$

 $FeOH^{2+} + H_2O = Fe(OH)_2^+ + H^+$
 $Fe(OH)_2^+ H_2O = Fe(OH)_3^+ + H^+$

Водные растворы солей Fe³⁺ имеют сильнокислую реакцию. Соли Fe³⁺ с анионами слабых кислот подвергаются необратимому гидролизу.

II. В реакциях с сильными восстановителями соли Fe3+ проявляют окислительную активность:

$$2FeCI_3 + 2KI = 2FeCI_2 + I_2 + 2KCI$$

 $Fe_2(SO_4)_3 + H_2S = 2FeSO_4 + S + H_2SO_4$

III. При действии щелочей и водных растворов аммиака на растворы солей Fe³⁺ образуется осадок:

$$Fe^{3+} + 3OH^{-} = Fe(OH)_{3}$$

IV. При нагревании многие соли разлагаются:

$$2FeCI_3 = 2FeCI_2 + CI_2$$

 $Fe_2(SO_4)_3 = Fe_2O_3 + 3SO_3$
 $4Fe(NO_3)_3 = 2Fe_2O_3 + 12NO_2 + 3O_2$

V. Качественные реакции для обнаружения катионов Fe³⁺;

а)
$$4Fe^{3+} + 3[Fe(CN)_6]^{4-}$$
 желтая кровяная соль $= Fe_4[Fe(CN)_6]_3$

берлинская лазурь (темно-синий осадок)
б) Fe³⁺ + 3SCN⁻ = Fe(SCN)₃ роданид Fe(III) (р-р кроваво-красного цвета)