
КЛАССИФИКАЦИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ ОСНОВАНИЯ

Учитель химии МАОУ «Лицей №1» Солоха Н.В.

КЛАССИФИКАЦИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Неорганические вещества

ОСНОВАНИЯ

Основания — сложные вещества, состоящие из ионов металла и одной или нескольких гидроксогрупп (OH)

Основания

нерастворимые $Fe(OH)_2$, $Al(OH)_{3}$, $Mg(OH)_2$

растворимые (щелочи)
NaOH, KOH,
Ba(OH)

Растворимости солей, кислот и оснований в воде

Ионы	H*	Li ⁺	NH ₄	K ⁺	Na [†]	Ag	Ba²	†Ca²	⁺Mg²	Mn²	[†] Zn ²	Ni ²⁺	Sn²	Pb2	†Cu²	†Hg²	Sr2	Fe²	Fe ³	Al3+	Cr ³
OH-		Р	P	Р	Р	-	P	M	Н	н	н	Н	Н	н	Н	-	M	н	Н	Н	Н
NO ₃	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р		Р	Р	P	Р	Р	Р	Р	P
F	Р	M	Р	P	Р	Р	M	Н	Н	Р	Р	P	Р	Н	Р	_	Н	Н	Н	M	Н
CI ⁻	Р	Р	Р	P	Р	Н	Р	P	P	Р	Р	P	Р	M	Р	P	Р	Р	Р	P	P
Br ⁻	Р	Р	Р	Р	Р	Н	P	P	Р	Р	Р	Р	Р	M	Р	M	Р	Р	Р	P	P
17	Р	Р	Р	Р	Р	н	Р	Р	Р	Р	Р	P	M	Н	-	Н	Р	Р	.—	Р	-
S2-	Р	Р	Р	Р	Р	н	_	_	-	н	Н	н	Н	Н	н	Н	Н	Н	_	_	-
SO ₃ -	Р	Р	Р	P	Р	н	Н	Н	M	_	M	Н		н		Н	Н	н	_	1000	-
SO4-	Р	Р	Р	Р	Р	M	Н	M	Р	Р	Р	Р	Р	Н	Р		Н	Р	P	Р	P
CO ₃ -	Р	Р	Р	Р	Р	н	н	Н	Н	Н	Н	н	-	н	Н	Н	н	Н		-	7-
SiO ₃ ²⁻	Н	н	_	Р	Р	-	н	Н	Ĥ	н	Н	»—	_	н	_	-	Н	н	_	-	-
P0 ₄ ³⁻	Р	н	-	Р	Р	Н	Н	Н	н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CH3C00	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р

Таблица растворимости кислот, оснований, солей

- Гидроксогрупа (гидроксильная группа, гидроксидная группа) группа OH.
- Валентность гидроксогруппы всегда равна I.
- Количество гидроксогрупп в молекуле основания равно валентности металла:

```
• NaOH, KOH,
II I II I II I II I
```

- Ca(OH)₂, Ba(OH)₂, Fe(OH)₂, Mg(OH)₂,
 III I
- $Fe(OH)_3$. $Al(OH)_3$.

Составление формул оснований

• Формулы оснований составляются по валентности:

Составить формулу гидроксида железа (III):

```
Fe OH

HOK = 3

3: III = 1(индекс 1 не пишем)

3: I = 3( гидроксогруппу берем в скобки и за скобкой пишем индекс)

Fe(OH)<sub>3</sub>
```

Номенклатура оснований

• Название оснований складывается из слова «гидроксид», названия металла и его валентности, если она переменная:

NaOH – гидроксид натрия

КОН – гидроксид калия

Са(ОН), – гидроксид кальция

Fe(OH), - гидроксид железа (II)

 $Fe(OH)_3$ - гидроксид железа (III)

Валентность металла можно определить по количеству гидроксогрупп.

Свойства оснований

- Растворимость различна (по таб.)
- Щелочи вызывают ожоги
- Щелочи изменяют окраску индикаторов:

№ п/п	Название индикатора	Нейтральная среда(вода)	Кислая среда (кислота)	Щелочная среда (щёлочь)
1.	Лакмус	фиолетовый	красный	СИНИЙ
2.	Метилоранж(метиловый оранжевый)	оранжевый	Ярко-розовый(красный)	желтый
3.	Фенолфталеин	бесцветный	бесцветный	малиновый
4.	Универсальная индикаторная бумага	желтая	красная	синяя

Действие оснований на индикаторы

Название индикатора	Окраска индикатора в нейтральной среде	Окраска индикатора в щелочной среде
лакмус	фиолетовая	синяя
фенолфтале ин	бесцветная	малиновая
Метиловый оранжевый	оранжевая	желтая

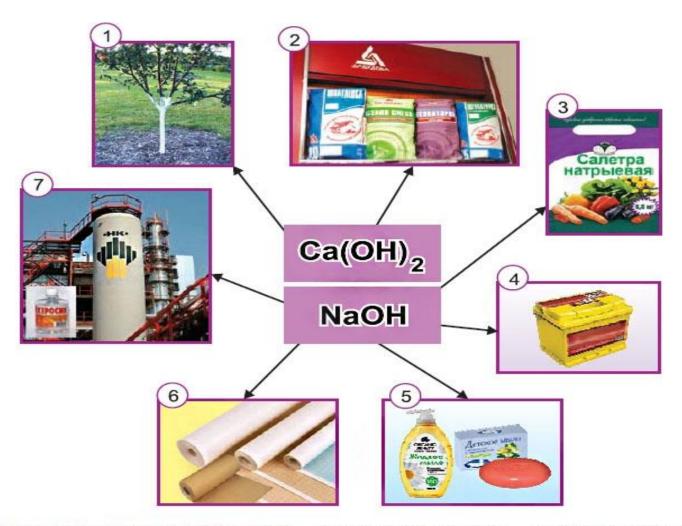


Рис. 122. Применение оснований: 1 — побелка деревьев; 2 — строительные работы; 3 — производство минеральных удобрений; 4 — в щелочных аккумуляторах; 5 — производство мыла; 6 — производство бумаги; 7 — очистка нефтепродуктов

Применение оснований

Аккумуляторы

Очистка нефти

Химическая промышленность • **ОСНОВАНИЯ**

ПГекстильная → промышленность

Сельское хозяйство

Строительство

Задание 1.

- Выписать формулы оснований назвать их. Определить по таблице растворимости, какие из них относятся к щелочам.
- CrO₃, HCl, LiOH, H₂SO₄, SiH₄. Li₂S, Ba₃N₂, Cr(OH)₂, LiBr, Cu(OH)₂, H₂O₂, H₃PO₄, Al(OH)₃, Zn(OH)₂, Ca₃ (PO₄)₂. K₂CO₃, Ba(OH)₂, Cr(OH)₃

Задание 2

• Составить формулы:

Гидроксид лития –

Гидроксид меди (I) -

Гидроксид меди (II) -

Гидроксид хрома (II) -

Гидроксид хрома (III) -

Гидроксид алюминия -

Гидроксид магния -

Выберите строку, в которой расположены только основания

Cu(OH) ₂	Ag ₂ O,	MgO
Ba(OH) ₂	NaOH	HBr
KOH	Al ₂ S ₃	Fe(OH) ₂

Выберите строку, в которой расположены только щелочи

Be(OH) ₂	Cr(OH) ₂	KOH
Fe(OH) ₂	Ca(OH) ₂	Ba(OH) ₂
NaOH	Zn(OH) ₂	Cr(OH) ₃

Выберите строку, в которой расположены только нерастворимые основания

Be(OH) ₂	Cr(OH) ₂	KOH
Fe(OH) ₂	Mg(OH) ₂	Ba(OH) ₂
NaOH	Cu(OH) ₂	Cr(OH) ₃

Домашнее задание

Выучить содержание презентации.
 Выполнить задания №1, №2