Microservices - DDD =
Micro-monolith

#ThumbtackJavaMeetup

27/03/2019 Vadim Anosov

Agenda

|. What is Domain-Driven Design?
ll. What are the key concepts of the DDD approach?
I1l. How DDD helps to define an application’s microservice architecture?
V. Why design microservice architecture without DDD concepts is the

way to Micro-monolith?

Trends: Microservices vs Domain-Driven Design

Trends: Microservices vs Domain-Driven Design

Interest over time Google Trends

Worldwide. 2004 - present. Web Search.
0 TAMT3K

"Data source: Google Trends (www.google.com/trends)"

® i

MICROSERVICESIEVERY\WHERE!

What is the right size of a service in the microservice
architecture?

What is the right size of a service in the microservice
architecture?

+SO)YOU/WANT TO SPLIT EACH
_ FUNCTION'INTO ITS OWN
a PROCESS

o

What is the right size of a service in the microservice
architecture?

% The most meaningful separation guided by domain knowledge

% The emphasis isn't on the size, but instead on business capabilities

Agenda

ll. What are the key concepts of the DDD approach?
I1l. How DDD helps to define an application’s microservice architecture?
V. Why design microservice architecture without DDD concepts is the

way to Micro-monolith?

Domain-Driven Design

)

“Implementing Domain-Driven Design’
by Vaughn Vernon

DOMAIN-DRIVEN

DESIGN

Foreword by Martin Fowler

“Domain-Driven Design: Tackling = YAUGNEV.ERNON
Foreworo 8y ERIC EVANS 38

Complexity in the Heart of Software’ :

by Eric Evans

)

Domain-Driven Design

DDD is an approach for building complex software applications that is

centered on the development of an object-oriented domain model.

Designing a city analogy

Planned

Big Ball Of Mud Domain Driven Design

Agenda

|. What is Domain-Driven Design?
Il What are the key concepts of the DDD approach?
I1l. How DDD helps to define an application’s microservice architecture?
V. Why design microservice architecture without DDD concepts is the

way to Micro-monolith?

Domain-Driven Design

Strategic patterns Tactical patterns
[Sub-domain] [Repositories] [Services]
Ubiquitous
Language
[Continuous] [Entities]
Integration
[Domain [Factories] [fhieelilizs]
Bounded
Context [Layers]

[Context] SR e
Ma alue
> [model] [Aggregates] [Objects]

Agenda

|. What is Domain-Driven Design?
ll. What are the key concepts of the DDD approach?
l1l. - How DDD helps to define an application’s microservice architecture?
V. Why design microservice architecture without DDD concepts is the

way to Micro-monolith?

Microservices dilemma

v v

Monolith first Microservices first

Three steps to defining an application’s
_— microservice architecture

% |dentify system operations
* ldentify services

% Define service APIls and collaborations

Three steps to defining an application’s
microservice architecture

% Identify system operations:

————————————————————

createOrder ()
As a consumer

| want to place an order
so that | can ...

P
o

As a restaurant
| want to accept an order
sothat | can ...

P

fa=-

acceptOrder ()

|
|
|
|
|
|
:
|
: - Application
|
|
|
|
|
|
|
|
|

DDD toolbox: Ubiquitous Language

Ubiquitous Language

Technical terms

Business terms
developers don’t
understand

Domain Model Terms

Technical aspects
of design

DDD Patterns

Technical design
patterns

Business terms
everyone uses that
don’t appear in design

Bounded Contexts

S.0.L.1.D design
principles

Candidates to fold into model

DDD toolbox: Ubiquitous Language

Turn on

R

Domain
Expert

Sy

Developer Developer

Ublquitous
Language Whiteboard

disoussions

Application
Code

Specs and
documentation

Turn off

f i - “ “ s
: nn
Ag a'e

o M
] v Rl
1 — TRV e
o A [\ ¢
Y ! e
o=
)¢ "
] ? /
A
v,
t
— __/ E

Ubiquitous Language: Extracting a Hidden Concept

' %*

Voyage Cargo

public int makeBooking (Cargo cargo, Voyage voyage) {
int confirmation = orderConfirmationSequence.next () ;
voyage .addCargo (cargo, confirmation) ;
return confirmation;

}

Ubiquitous Language: Extracting a Hidden Concept

Voyage Cargo

capacity size

public int makeBooking (Cargo cargo, Voyage voyage) {
double maxBooking = voyage.capacity() * 1.1;
if ((voyage.bookedCargoSize() + cargo.size()) > maxBooking)
return -1;
int confirmation = orderConfirmationSequence.next() ;
voyage .addCargo (cargo, confirmation) ;
return confirmation;

Ubiquitous Language: Extracting a Hidden Concept

Voyage - Cargo

capacity size

{sum(cargo.size) < vbyage.capacity *1.1}

Overbooking
Policy

public int makeBooking(Cargo cargo, Voyage voyage) {
if (!overbookingPolicy.isAllowed(cargo, voyage)) return -1;
int confirmation = orderConfirmationSequence.next () ;
voyage .addCargo (cargo, confirmation) ;
return confirmation;

DDD toolbox: Domain, Subdomain

Domain

Supporting
Subdomain (A)

Bounded Context

Supporting
Subdomain (B)

Bounded Context

Bounded
Context

Generic
Subdomain

Bounded
Context
(External)

Result of using Ubiquitous Language, Domain
and Subdomain

Given a consumer
And a restaurant
And a delivery address/time that can be served by that restaurant
And an order total that meets the restaurant's order minimum
When the consumer places an order for the restaurant
Then consumer's credit card is authorized
And an order is created in the PENDING ACCEPTANCE state 4 S=a L
And the order is associated with the consumer
And the order is associated with the restaurant

Order taking

Assigned to
Placed by For Restaurant Courier Location
Consumer [*— Order
name available lat
* state ATas s lon
’ays using Paid using Accounting
subdomain
PaymentInfo DeliveryInfo OrderLineltem MenuItem Address
creditcardId deliveryTime quantity nalf\e streetl
price street2
city
state

zip

Three steps to defining an application’s
microservice architecture

% Identify services:

Application

createOrder ()
e Order
Service
Restaurant
== Service
Kitchen
Service
acceptOrder ()

Patterns for decomposing an application into

Decompose by
business capability

Supplier management

| Courier management }—

4—1.| Courier Service

H
H

management

Consumer management

Order taking and fulfiliment

Service

f——1le{ Consumer Service

Order management }—

e

Order Service

Restaurant order
ticket management

Logistics

e Kitchen Service

Courier availabili
management

Delivery management

Accounting

Consumer accounting

Delivery Service

Service

Courier accounting

services

Decompose by
subdomain

Order taking

Delivery
subdomain

Accounting
subdomain

Kitchen
subdomain

Order Service

Order
domain model

Delivery Service

Delivery
domain model

Maps to

Kitchen Service

Kitchen
domain model

Maps to

.... Service

Maps to

Accounting Service

Accounting
domain model

DDD toolbox: Bounded Context

Payments Context

Explicitly define the context within Keep the model strictly

which a model is applied consistent within these bounds

Fulfillment Context

Explicitly set boundaries in terms

of team organization

0 TAMT3K

Bounded Context: possible problems

oy }

Duplicate concepts False cognates

orser)

God classes preventing decomposition

I
public class Order {
private OrderTotal orderTotal;
private DateTime deliveryTime;
private DateTime pickupTime;

private BigInteger transactionId;

public void createOrder()f...}
public
public
public
public
public

public

public

God classes preventing decomposition

public class Order {
private OrderTotal orderTotal;

private DateTime deliveryTime;

private DateTime pickupTime; <<delivery>>

’private BigInteger transactionId; <<biIIing>>

public void createOrder(){...}

<<orderTaking>>
public void cancelOrder(){...}
public void acceptOrdsr(){...}
public .-} <<restaurant>>
public rPickun() {...}
public void ass Cour_er(Courier courier)f...}
public e {-..} <<delivery>>
public Note noteDelivered(){...}

DDD toolbox: Aggregate

Only accessed through its
Root Entity.

Responsible for maintaining
any/all business invariants.

«value object» «aggregate roots»

DeliveryInfo Order

«value object»

\

«value objects»
OrderLineltem

quantity

: Order aggregate

A cluster of objects treated
as a single unit.

'
PaymentInfo {
)

The atomic unit for any
transactional behavior.

Aggregate: Rule #1

i i
| : :
. : ' !

i DeliveryInfo Sogqrogarereex --- saggregare Tooty DeliveryInfo
! Order ' ' Consumer
! i i
! consumerId H :

' i
| PaymentInfo restaurantId = : PaymentInfo
| N o

L 1
| 1 M ! Consumer aggregate
' N A o i e e s S 0 A S 0 e e 6
i : N \
' L H L
i ! i !
! . H ’ «aggregate root» | |

'
! OrderLineltem ; ! T R i
X ' - '
i b :
| . : . '
! guantity ' : .
: ; : ;
1 H] -
' Order aggregate . : Restaurant aggregate |

Reference other aggregate roots
via identity (primary key)

Aggregate: Rule #2

Service A

Service B

Local transaction 1

Create/update

X Local transaction 2

X-

Local transaction 3

Aggregate X

Create/update

Create/update

Aggregate Y

Aggregate Z

One transaction creates or
updates one aggregate
(Transaction scope = service)

Customer

/ / Product

Aggregate granularity

Customer

/ Product

Customer

Product

Consistency <

> Scalability

DDD & Microservices

% Apply strategic DDD to identify microservices (bounded context,
ubiquitous language, context map)

% Apply tactical DDD to design individual services (aggregator, value
object, service)

What is the right size of a service in the microservice
architecture?

“..Microservice should be no smaller than an aggregate, and no larger

than a bounded context...”

What is the right size of a service in the microservice
architecture?

Agg reg ate S Microservice S
; Value Value

Useful links

Domain-Driven Design: Tackling Complexity in the Heart
of Software

Implementing Domain-Driven Design

Microservices Patterns: With examples in Java

Building Microservices: Designing Fine-Grained Systems

Martin Fowlers blog: DDD

DDD Europe

Thank you for your attention!

