N.I. Pirogov Russian

National
Research Medical
University

Medicobiologic
Faculty
International
Faculty

Mathematics

Vector Algebra Essentials

Dr. Oleg B. Shiryaev

General Physics Institute, Russian Academy of Science
https://sites.google.com/site/drolegbshiryaev/ 8-916-205-55-82 oleg.b.shiryaev@mail.ru

Math Prelude 1: Vector Algebra Essentials

Cartesian coordinate frame
Distance between point and coordinate frame origin:

Direction cosines:

Math Prelude 1: Vector Algebra Essentials

Cartesian coordinate frame
Distance between point and coordinate frame origin:

Direction cosines:

陽

In analytic geometry, the direction cosines (or directional cosines) of a vector are the cosines of the angles between the vector and the three coordinate axes. Equivalently, they are the contributions of each component of the basis to a unit vector in that direction.

x, y, z, axis system

Vector Magnitudes and Collinearity

Unit Vectors in Coordinate Directions

Operations on Vectors in Coordinate Representation

圆

Dot Product

Dot Product in Terms of Vector Components

$$
\bar{a} \cdot \bar{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

$$
\begin{aligned}
& \bar{a} \cdot \bar{b}=\left(a_{x} \bar{i}+a_{y} \bar{j}+a_{z} \bar{k}\right) \cdot\left(b_{x} \bar{i}+b_{y} \bar{j}+b_{z} \bar{k}\right)= \\
& =a_{x} b_{x} \bar{i} \bar{i}+a_{x} b_{y} \bar{i} \bar{j}+a_{x} b_{z} \bar{i} \bar{k}+ \\
& +a_{y} b_{x} \bar{j} \bar{i}+a_{y} b_{y} \bar{j} \bar{j}+a_{y} b_{z} \bar{j} \bar{k}+ \\
& +a_{z} b_{x} \bar{k} \bar{i}+a_{z} b_{y} \bar{k} \bar{j}+a_{z} b_{z} \bar{k} \bar{k}= \\
& =a_{x} b_{x}+0+0+0+a_{y} b_{y}+0+0+0+a_{z} b_{z}:
\end{aligned}
$$

Vector Magnitude

園

Vectors Orgthogonality Condition

图

Projection of a Vector on Another Vector＇s Direction

图

$$
=\frac{a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}}{\sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}}
$$

Angle Between Vectors

圂

$$
=\frac{a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \cdot \sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}}
$$

Vectors on a Plane

Examples

Example：prove that the diagonals are perpendicular for $A(-4 ;-4 ; 4), \quad B(-3 ; 2 ; 2), \quad C(2 ; 5 ; 1),{ }^{\text {B }}$ 。

Example：find the length of ${ }^{\text {B }}$ for $|\bar{a}|=2,|\bar{b}|=3,(\widehat{\bar{a}, \bar{b}})=\frac{\pi}{3}$

Example：calculate work performed by the force to move a body from 䀦 to 葍 ．Calculate the angle between the force and the displacement

RNRMU Physics/Math

Cross Product

The Cross Product $\mathbf{a} \times \mathbf{b}$ of two vectors is another vector that is at right angles to both:

And it all happens in 3 dimensions!

Which Way?

The cross product could point in the completely opposite direction and still be at right angles to the two other vectors, so we have the:

"Right Hand Rule"

With your right-hand, point your index finger along vector \mathbf{a}, and point your middle finger along vector \mathbf{b} : the cross product goes in the direction of your thumb.

We can calculate the Cross Product this way:

$$
\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin (\theta) \mathbf{n}
$$

- $|\mathbf{a}|$ is the magnitude (length) of vector a
- $|\mathbf{b}|$ is the magnitude (length) of vector \mathbf{b}
- θ is the angle between \mathbf{a} and \mathbf{b}
- \mathbf{n} is the unit vector at right angles to both \mathbf{a} and \mathbf{b}

So the length is: the length of \mathbf{a} times the length of \mathbf{b} times the sine of the angle between \mathbf{a} and \mathbf{b},

Then we multiply by the vector \mathbf{n} to make sure it heads in the right direction (at right angles to both \mathbf{a} and \mathbf{b}).

Cross Product

$$
\begin{aligned}
|\bar{c}| & =|\bar{a}| \cdot|\bar{b}| \sin \varphi, \\
\varphi & =(\widehat{\bar{a}, \bar{b}})
\end{aligned}
$$

Area of triangle with sides \boldsymbol{a} and \boldsymbol{b} :

$$
\begin{aligned}
& \bar{a} \times \bar{b}=-(\bar{b} \times \bar{a}) \\
& \\
& (\lambda \bar{a}) \times \bar{b}=\bar{a} \times(\lambda \bar{b}) \\
& \bar{a} \| \bar{b} \Longleftrightarrow \bar{a} \times \bar{b}=\overline{0} \\
& (\bar{a}+\bar{b}) \times \bar{c}=\bar{a} \times \bar{c}+\bar{b} \times \bar{c}
\end{aligned}
$$

$$
S_{\triangle}=\frac{1}{2}|\bar{a} \times \bar{b}|
$$

Cross Product in Coordinate Terms

	\bar{i}	\bar{j}	\bar{k}
\bar{i}	$\overline{0}$	\bar{k}	$-\bar{j}$
\bar{j}	$-\bar{k}$	$\overline{0}$	\bar{i}
\bar{k}	\bar{j}	$-\bar{i}$	$\overline{0}$

$$
\bar{a} \times \bar{b}=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|
$$

$$
\bar{a} \times \bar{b}=\left(a_{x} \bar{i}+a_{y} \bar{j}+a_{z} \bar{k}\right) \times\left(b_{x} \bar{i}+b_{y} \bar{j}+b_{z} \bar{k}\right)=
$$

$$
=a_{x} b_{x}(\bar{i} \times \bar{i})+a_{x} b_{y}(\bar{i} \times \bar{j})+a_{x} b_{z}(\bar{i} \times \bar{k})+a_{y} b_{x}(\bar{j} \times \bar{i})+a_{y} b_{y}(\bar{j} \times \bar{j})+
$$

$$
+a_{y} b_{z}(\bar{j} \times \bar{k})+a_{z} b_{x}(\bar{k} \times \bar{i})+a_{z} b_{y}(\bar{k} \times \bar{j})+a_{z} b_{z}(\bar{k} \times \bar{k})=
$$

$$
=\overline{0}+a_{x} b_{y} \bar{k}-a_{x} b_{z} \bar{j}-a_{y} b_{x} \bar{k}+\overline{0}+a_{y} b_{z} \bar{i}+a_{z} b_{x} \bar{j}-a_{z} b_{y} \bar{i}+\overline{0}=
$$

$$
=\left(a_{y} b_{z}-a_{z} b_{y}\right) \bar{i}-\left(a_{x} b_{z}-a_{z} b_{x}\right) \bar{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \bar{k}=
$$

$$
=\left|\begin{array}{ll}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end{array}\right| \bar{i}-\left|\begin{array}{cc}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{array}\right| \bar{j}+\left|\begin{array}{ll}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{array}\right| \bar{k}
$$

Cross Product in Coordinate Terms

When \mathbf{a} and \mathbf{b} start at the origin point $(0,0,0)$, the Cross Product will end at:

- $c_{x}=a_{y} b_{z}-a_{z} b_{y}$
- $c_{y}=a_{z} b_{x}-a_{x} b_{z}$
- $c_{z}=a_{x} b_{y}-a_{\mathbf{y}} b_{x}$

Example: The cross product of $\mathbf{a}=(2,3,4)$ and $\mathbf{b}=(5,6,7)$

- $c_{x}=a_{y} b_{z}-a_{z} b_{y}=3 \times 7-4 \times 6=-3$
- $c_{y}=a_{z} b_{x}-a_{x} b_{z}=4 \times 5-2 \times 7=6$
- $c_{z}=a_{x} b_{y}-a_{y} b_{x}=2 \times 6-3 \times 5=-3$

Answer: $\mathbf{a} \times \mathbf{b}=(-3,6,-3)$

Box Product

$$
\begin{aligned}
& (\bar{a} \times \bar{b}) \cdot \bar{c}=\bar{d} \cdot \bar{c}=|\bar{d}| \cdot \operatorname{mp}_{\bar{d}} \bar{c} \\
& |\bar{d}|=|\bar{a} \times \bar{b}|=S \\
& (\bar{a} \times \bar{b}) \cdot \bar{c}=S \cdot(\pm H) \\
& (\bar{a} \times \bar{b}) \cdot \bar{c}={ }^{\text {a }} \\
& (\bar{a} \times \bar{b}) \cdot \bar{c}=(\bar{b} \times \bar{c}) \cdot \bar{a}=(\bar{c} \times \bar{a}) \cdot \bar{b} \\
& (\bar{a} \times \bar{b}) \cdot \bar{c}=\bar{a} \cdot(\bar{b} \times \bar{c}) \\
& \bar{a} \bar{b} \bar{c}=-\bar{a} \bar{c} \bar{b}, \bar{a} \bar{b} \bar{c}=-\bar{b} \bar{a} \bar{c}, \bar{a} \bar{b} \bar{c}=\text { 圆 } \\
& \text { B }
\end{aligned}
$$

Triple Product in Coordinate Terms

$$
\begin{aligned}
& (\bar{a} \times \bar{b}) \bar{c}=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \cdot\left(c_{x} \bar{i}+c_{y} \bar{j}+c_{z} \bar{k}\right)= \\
& =\left(\left|\begin{array}{ll}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end{array}\right| \bar{i}-\left|\begin{array}{cc}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{array}\right| \bar{j}+\left|\begin{array}{cc}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{array}\right| \bar{k}\right) \cdot\left(c_{x} \bar{i}+c_{y} \bar{j}+c_{z} \bar{k}\right)= \\
& =\left|\begin{array}{cc}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end{array}\right| \cdot c_{x}-\left|\begin{array}{cc}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{array}\right| \cdot c_{y}+\left|\begin{array}{cc}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{array}\right| \cdot c_{z} \\
& \bar{a} \bar{b} \bar{c}=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|
\end{aligned}
$$

Example: find prism volume for

$$
\bar{a}=\overline{A B}=(-1 ;-3 ;-2), \quad \bar{b}=\overline{A C}=(1 ; 3 ;-1), \quad \bar{c}=\overline{A D}=(2 ;-2 ;-5)
$$

