Презентации по Математике

Понятие о конечных автоматах
Понятие о конечных автоматах
1 Способы задания конечных автоматов Термин «конечный автомат» используется для обозначения одного класса цифровых устройств, находящих применение в автоматике, телемеханике, вычислительной технике. В отличие от комбинационных схем эти устройства содержат память. Выходные сигналы конечного автомата (КА) зависят от значений на входах не только в данный момент времени, но и от предыдущих значений входных сигналов. Необходимая информация о сигналах, поступивших на входы раньше, может быть учтена посредством введения промежуточных сигналов, которые связаны с внутренней структурой автомата и называются состояниями автомата. Используют два типа моделей КА – абстрактная и структурная. Абстрактный автомат – это математическая модель, в которой абстрагируются от реальной физической природы сигналов и рассматривают их как буквы некоторого алфавита. Абстрактный автомат (АА) имеет один вход и один выход и работает в дискретном времени, принимающем целые неотрицательные значения t = 0,1,2,... Эти моменты времени называются тактами. В момент t АА, находясь в состоянии q(t), способен воспринять на выходе в этот же момент букву выходного алфавита y(t) и перейти в следующее состояние q(t+1).
Продолжить чтение
Признак перпендикулярности прямой и плоскости
Признак перпендикулярности прямой и плоскости
Цели урока: Материалы этого урока знакомят с признаком перпендикулярности прямой и плоскости и свойствами перпендикулярных прямой и плоскости. Окружающий нас мир дает много примеров перпендикулярности прямой и плоскости. Правильно установленный вертикальный столб перпендикулярен к плоскости земли. Линии пересечения стен комнаты перпендикулярны к плоскости пола. При строительстве зданий при установке столбов для их устойчивости очень важно обеспечить перпендикулярность к поверхности земли. Для этого существуют специальные способы проверки перпендикулярности, основанные на признаке перпендикулярности прямой и плоскости и свойствах перпендикулярных прямой и плоскости, которые мы и будем изучать. Изучив материалы предыдущего урока, вы познакомились с определением и свойствами перпендикулярных прямых, с определением прямой перпендикулярной к плоскости. Повторите еще раз эти материалы. Это поможет вам правильно ответить на вопросы теста, проверяющего ваши знания по теме «Перпендикулярные прямые». Перпендикулярные прямые Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 900. Для обозначения перпендикулярности используется знак ┴. На рисунке прямая m перпендикулярна прямой n или m┴n. Лемма о перпендикулярных прямых Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой. Символически эту лемму можно записать так
Продолжить чтение
Числовые неравенства
Числовые неравенства
На практике работать с неравенствами позволяет ряд свойств числовых неравенств. Они вытекают из введенного нами понятия неравенства. По отношению к числам это понятие задается следующим утверждением, которое можно считать определением отношений «меньше» и «больше» на множестве чисел: Определение. число a больше числа b тогда и только тогда, когда разность a−b является положительным числом; число a меньше числа b тогда и только тогда, когда разность a−b – отрицательное число; число a равно числу b тогда и только тогда, когда разность a−b равна нулю. Это определение можно переделать в определение отношений «меньше или равно» и «больше или равно». Вот его формулировка: Определение. число a больше или равно числу b тогда и только тогда, когда a−b – неотрицательное число; число a меньше или равно числу b тогда и только тогда, когда a−b – неположительное число. Данные определения мы будем использовать при доказательстве свойств числовых неравенств. Свойства числовых неравенств Свойство антирефлексивности, выражающееся в том, что для любого числа a неравенства aa  неверные. Действительно, известно, что для любого числа a выполняется равенство a−a=0, откуда в силу разностного определения равных чисел следует равенство a=a. Следовательно, aa – неверные неравенства. Например, 3
Продолжить чтение