Protein structure at action: bind transform release презентация

Содержание

Слайд 2

BIND: repressors

α- turn - α

Слайд 3

DNA & RNA
BINDING

Zn-
fingers

Leu-zipper

Слайд 4

-BINDING-INDUCED DEFORMATION
MAKES REPRESSOR ACTIVE, and IT BINDS TO DNA

BIND ? ?

RELEASE: REPRESSOR

Слайд 5

Immunoglobulin

Слайд 6

Standard positions of active sites in protein folds

Слайд 7

There are some
with catalytic
(Ser-protease) site

Слайд 8

Preferential binding of TS: RIGID enzyme

Catalysis: stabilization of the transition state (TS)
Theory: Pauling

& Holden

BIND ? TRANSFORM ? RELEASE

Слайд 9

Catalysis: stabilization of the transition state (TS)
Theory: Pauling & Holden
Experimental verification: Fersht

______

__________

P

reputed
TS

Слайд 10

Catalysis: stabilization of the transition state (TS)
Theory: Pauling & Holden
Experimental verification: Fersht

______

__________

P

reputed
TS

/

/

/

/

This


protein
engineering
reduces
the rate
by 1000000

Preferential
binding
of TS:
RIGID
enzyme

Слайд 11

Catalytic antibodies
ABZYM = AntyBody enZYM

Antibodies
are
selected
to TS-like
molecule

Transition state (TS ‡)

Preferential
binding
of

TS:
RIGID
enzyme

BIND ? TRANSFORM ? RELEASE

Suggested by Jencks in 1969
Done by Schultz and Lerner in 1994

Слайд 12

BIND ? TRANSFORM ? RELEASE: ENZYME

Note:
small
active
site

chymotrypsin

Слайд 13

Sometimes:
Different folds with the same active site:
the same biochemical function

Слайд 14

POST-TRANSLATIONAL MODIFICATION
Sometimes, only the CHAIN CUT-INDUCED DEFORMATION
MAKES THE ENZYME ACTIVE READY

Chymotripsinogen

active
cat.

site

non-active “cat. site”

CUT

Chymotripsin


Слайд 15

Chymotrypsin catalyses hydrolysis of a peptide
Spontaneous hydrolysis: very slow

Слайд 16

SER-protease:
catalysis

Слайд 17

CHYMOTRYPSIN ACTIVE SITE with INHIBITOR

Слайд 18

Preferential binding of TS: RIGID enzyme

F = k1x1 = - k2x2 Ei

= (ki /2)(xi)2 = F2/(2ki )
Hooke’s & 2-nd Newton’s Energy is concentrated
laws in the softer body.
Effective catalysis: when
substrate is softer than protein
Kinetic energy cannot be stored for catalysis
Friction stops a molecule within
picoseconds:
m(dv/dt) = -(3πDη)v [Stokes law]
D – diameter; m ~ D3 – mass; η – viscosity
tkinet ≈ 10-13 sec × (D/nm)2 in water

Слайд 19

PROTEIN STRUCTURE AT ACTION:
BIND ? TRANSFORM ? RELEASE
RIGID CATALITIC SITE
INDEPENDENT ON OVERALL

CHAIN FOLD

Слайд 20

Induced fit
model
for enzyme catalysis.

Daniel Edward Koshland, Jr. 
(1920 – 2007)

Hermann Emil Louis
Fischer (1852 –1919)

Lock

and key
model
for enzyme catalysis.

Слайд 22

Double sieve:
movement of substrate
from one active site to another


tRNAIle

Fersht A.R., Dingwall C. (1979)

Слайд 23

Movement in two-domain enzyme:
One conformation for binding (and release),
another for catalysis

Induced fit


Слайд 24

Two-domain dehydrogenases:
Universal NAD-binding domain;
Individual substrate-binding domain

Слайд 25

Movement in quaternary structure:
Hemoglobin vs. myoglobin

non-covalent
bonding of O2

move of O2 to

and from Fe needs
fluctuation of a few protein’s side chains

Слайд 26

Kinesin : Linear cyclic motor
the simplest one-direction walking machine with cyclic

ligand-induced conformational changes and bindings/unbindings to tubulin microtubule

Mandelkow & Mandelkow,
Trends Cell Biol. 12, 585 (2002)

The head “feels” its position, front or rear,
due to its interaction with the linker. Yildiz, Tomishige, Gennerich, Vale, Cell 134, 1030 (2008)

Слайд 27

Kinesin : Linear cyclic motor
the simplest one-direction walking machine with cyclic

ligand-induced conformational changes and bindings/unbindings to tubulin microtubule

Слайд 28

Sir Andrew Fielding Huxley
(1917 – 2012)
Nobel Prize 1963

Myosin "cross-bridges"

Слайд 29

Механохимический цикл

Миозин Актин

АТФ → АДФ + Ф
15 ккал/моль
в клеточных условиях

Слайд 30

Mechanochemical cycle

Myosin
Actin

Слайд 31

structure from the X-ray data: Junge, Sielaff, Engelbrecht, Nature, 459, 364 (2009)

Rotary

motor
F0F1-ATP synthase

Слайд 32

Engelbrecht & Junge, FEBS Lett. 414, 485 (1997)
Elston, Wang, Oster, Nature, 391, 510

(1998)

F0-machine: H+-turbine
Elston, Wang, Oster, Nature, 391, 510 (1998)

Acid side

Basic side

Rotary motor
F0F1-ATP synthase

Слайд 33

Rotary motor
F0F1-ATP synthase ⎯ working cycle of the H+-turbine

Слайд 34

H3O+ binding in Bacillus pseudofirmus

Ion binding
to the rotor ring of

F0F1-ATP synthase

H+ binding in Spirulina platensis

Rotary motor

Pogoryelov, Yildiz,
Faraldo-Gómez, Meier,
Nat. Struct. Mol. Biol.,
16, 1068 (2009)

Preiss, Yildiz, Hicks, Krulwich, Meier, PLoS Biol. 8, e1000443 (2010)

Слайд 35

SUMMARY
of the course

Слайд 36

PROTEIN PHYSICS
Interactions
Structures
Selection
States & transitions

Слайд 37

Intermediates & nuclei
Structure prediction & bioinformatics
Protein engineering & design
Functioning

Слайд 38

Благодарю за внимание

товарищи офизевшие биологи!

Имя файла: Protein-structure-at-action:-bind-transform-release.pptx
Количество просмотров: 54
Количество скачиваний: 0