Печатные формы глубокой печати презентация

Содержание

Слайд 2

Изготовление печатных форм с использованием копирования

Слайд 3

Общие сведения. Разновидности печатных форм глубокой печати.

Печатающие элементы современных форм глубокой печати (см.

рис. 1.4) независимо от вида воспроизводимых текстовых и изобразительных оригиналов представляют собой мельчайшие по площади углубления — растровые ячейки. Они разделены между собой тонкими перегородками-пробельными элементами, находящимися на одном уровне с поверхно­стью формного материала.

Слайд 4

Общие сведения. Разновидности печатных форм глубокой печати.

При воспроизведении тоновых оригиналов (рис. 9.1, а) в зависимости

от способа изготовления печатных форм эти углубления могут быть: одинаковыми по площади, но переменной глубины (рис. 9.1, б); различными по площади, но практически почти одинаковой глубины (рис. 9.1, в) и переменной глубины и площади (рис. 9.1, г).

Слайд 5

Общие сведения. Разновидности печатных форм глубокой печати.

Слайд 6

Общие сведения. Подготовка формных цилиндров.

В качестве формного материала для изготовления форм глубокой печати

применяют обычно электролитическую медь, гальванически наращиваемую на формные цилиндры. Последние входят в комплект печатной машины и используются практически неограниченное число раз. Подготовка формных цилиндров, включающая механические, химические и электрохимические операции, производится по одной технологии для всех способов изготовления форм. Формные цилиндры поставляются заводом омедненными — с основным медным слоем толщиной 1,2—1,5 мм или без него. Во втором случае процесс подготовки цилиндров на полиграфическом предприятии продолжается несколько суток и включает следующие операции (рис. 9.3):

Слайд 7

Общие сведения. Подготовка формных цилиндров.

- механическую и химическую обработку поверхности стального цилиндра 1,

диаметр и длина которого соответствуют типу печатных машин;
— осаждение гальваническим путем тонкого (5—10 мкм) слоя никеля 2, необходимого для более прочного сцепления основного слоя меди с поверхностью цилиндра;
- гальваническое наращивание основного слоя меди 3 и механическую обработку его поверхности (проточку, шлифовку и полировку);
— нанесение на основной медный слой химическим способом тончайшего разделительного слоя 4 (серебряного или какого-либо иного), обеспечивающего получение гальванического съемного покрытия — медной рубашки;
- гальваническое наращивание медной рубашки 5 толщиной 80—100 мкм с последующей ее полировкой.

Слайд 8

Изготовление печатных форм с применением пигментной бумаги. Получение пигментно-желатиновой копии на формном цилиндре.

Различные по

глубине печатающие элементы на формном цилиндре получают посредством травления меди через находящийся на ней задубленный копировальный слой. В зависимости от тональности изображения он должен быть различной толщины, благодаря чему регулируется глубина травления. Такой рельефный задубленный слой получают переносом залубленной копии с промежуточного светокопированного материала — пигментной бумаги. Таким образом, процесс изготовления печатной формы сводится к следующим операциям: подготовке формных цилиндров, получению на них пигментно-желатиновой копии, травлению и отделке формы.

Слайд 9

Изготовление печатных форм с применением пигментной бумаги. Получение пигментно-желатиновой копии на формном цилиндре.

Пигментная бумага

состоит из бумажной подложки, покрытой с одной стороны окрашенным в оранжево-красный цвет слоем желатины толщиной 80—90 мкм с целевыми добавками. Во избежание темнового дубления пигментную бумагу очувствляют в растворе дихромата калия обычно непосредственно перед экспонированием. После высушивания пигментно-желатиновый слой становится светочувствительным и дубится под действием сине-фиолетового излучения.
Информация копируется на пигментную бумагу с тоновых, штриховых и текстовых диапозитивов (или их монтажа) в таких же по принципу работы копировальных станках, как и при изготовлении форм плоской офсетной печати. В процессе копирования про­изводится растрирование одновременно тонов, штрихов и текста. Для этого пигментную бумагу экспонируют дважды: через растр и через диапозитивы.

Слайд 10

Изготовление печатных форм с применением пигментной бумаги. Получение пигментно-желатиновой копии на формном цилиндре.

Растр глубокой

печати (см. рис. 4.10, б) представляет собой стеклянную пластину, на поверхности которой нанесены мельчайшие непрозрачные чаще всего квадратные элементы, разделенные между собой прозрачными промежутками — «линиями».

Слайд 11

Изготовление печатных форм с применением пигментной бумаги. Получение пигментно-желатиновой копии на формном цилиндре.

Ширина непрозрачных

элементов в 2,4—4,0 раза больше ширины прозрачных «линий». Наибольшее применение получили растры 70—80 лин/см. Во время экспонирования через растр 1 (рис. 9.4, а) лучи света пройдут только через его прозрачные участки, в результате чего пигментно-желатиновый слой 2 будет расчленен задубленными на одинаковую глубину взаимно перпендикулярными «линиями».
При экспонировании, например, через тоновый диапозитив 3 (рис. 9.4, б) интенсивность светового потока, прошедшего через него, будет зависеть от степени прозрачности его участков. Таким образом, чем больше прозрачность диапозитива, тем глубже задубливаются участки пигментно-желатинового слоя, находящиеся между задубленными «линиями» (последние при этом получают дополнительное дубление).

Слайд 12

Изготовление печатных форм с применением пигментной бумаги. Получение пигментно-желатиновой копии на формном цилиндре.

Экспонированную копию

прикатывают (рис. 9.4, в) пигментно-желатиновым слоем к обезжиренной поверхности формного цилиндра (на рис. 9.4 для наглядности изображена не цилиндрическая, а плоская поверхность). Затем при вращении цилиндра в воде набухает незадубленный пигментно-желатиновый слой и от него легко отделяется бумажная основа. При дальнейшей обработке водой все незадубленные участки слоя растворяются и удаляются с поверхности, т. е. происходит проявление копии.
После высушивания на медной поверхности цилиндра (рис. 9.4, г) остается рельефный пигментно-желатиновый слой — одинаковой максимальной высоты «линий» и различной высоты (от 1 до 12—14 мкм) элементов между ними. При этом максимальная высота последних, которую обычно называют толщиной, соответствует самым светлым участкам оригинала. Для штриховых изображений и текста толщина всех задубленных элементов между «линиями» будет одинаковой.

Слайд 13

Изготовление печатных форм с применением пигментной бумаги. Травление и отделка форм.

В результате травления (рис.

9.4, д) под пигментно-желатиновым слоем получаются печатающие элементы необходимой глубины — от 3 до 35 мкм. Через «линии» слоя, полученные от копирования растра, травящий раствор не проникает, и медь не травится. В результате этого образуются перегородки, необходимые для опоры ракеля при печатании. После травления с формы удаляют соответствующими растворами пигментно-желатиновый слой (рис. 9.4, е). 

Слайд 14

Изготовление печатных форм с применением пигментной бумаги. Травление и отделка форм.

В итоге получается печатная

форма с постоянной площадью и переменной глубиной печатающих элементов (см. рис. 9.1, б). Для повышения тиражестойкости до 0,4—0,5 млн оттисков и более на ее поверхность наращивают гальваническим способом тонкий (3—5 мкм) слой хрома.

Слайд 15

Изготовление печатных форм без применения пигментной бумаги.

Пигментный способ изготовления форм глубокой печати является

трудоемким, многооперационным, сложным и длительным процессом, но он позволяет получать высокое качество воспроизведения тоновых изображений. Поэтому для печатания продукции, к которой не предъявляется высоких требований тоновоспроизведения, можно изготавливать формы по более упрощенной технологии — беспиг­ментным способом *.
Суть его заключается в непосредственном копировании предвари­тельно растрированных изображений на формный цилиндр (минуя пигментную бумагу) и в прямом недиффузионном травлении печатающих элементов. По одному наиболее простому варианту этого способа процесс изготовления формы сводится к следующему.
* Такой способ называется глубокой автотипией.

Слайд 16

Изготовление печатных форм без применения пигментной бумаги.

С помощью специальных растров (например, г на рис. 4.10)

изготавливают диапозитивы (рис. 9.5, а), которые копируют на формный цилиндр, покрытый копировальным негативным слоем (например, фотополимеризующимся).

Слайд 17

Изготовление печатных форм без применения пигментной бумаги.

В результате экспонирования (рис. 9.5, б) полимеризуется слой на

будущих пробельных элементах формы. После проявления (рис. 9,5, в) — удаления слоя с печатающих элементов производится их химическое или электрохимическое травление в растворе хлорного железа (рис. 9.5, г). В результате этого почти все печатающие элементы формы травятся на одинаковую глубину (10— 16 мкм). Удалением копировального слоя (рис. 9.5, д) заканчивается процесс изготовления формы.

Слайд 18

Изготовление печатных форм без применения пигментной бумаги.

Полученные формы имеют различные по площади, но

примерно одинаковой глубины печатающие элементы, которые разделены не одинаковыми по ширине пробельными элементами (см. рис. 9.1, в), служащими опорой ракелю в процессе печатания. Тональность изображения этими формами передается, как в высокой и плоской офсетной печати, различными по величине растровыми элементами при почти одинаковой толщине красочного слоя. Это значительно сужает градационные возможности по сравнению с формами, изготовленными пигментным способом.

Слайд 19

Изготовление печатных форм гравированием

Слайд 20

Электронно-механическое гравирование печатных форм. Общие сведения.

Наиболее прогрессивную технологию изготовле­ния форм глубокой печати обеспечивает гравирование

печатающих элементов—поэлементная запись изображения на формном цилиндре.
Оно может выполняться тремя способами: электронно-механическим, электронно-оптическим (лазерным) и электронно-лучевым (электронной пушкой). Наиболее широко используется первый способ.
Электронно-механическое гравирование форм глубокой печати заключается в сканировании изображения промежуточного оригинала и гравировании растровых ячеек на формном цилиндре.

Слайд 21

Электронно-механическое гравирование печатных форм. Общие сведения.

Эти ячейки (см. рис. 9.1, г) имеют почти такую

же, как при гравировании клише, геометрическую форму, но являются печатающими элементами.

Слайд 22

Электронно-механическое гравирование печатных форм. Общие сведения.

Электронно-механический способ характеризуется малооперационностью, стабильностью, высокой производительностью дает возможность

получить, заданную глубину печатающих элементов в зависимости от градации оригинала и высвободить производительную площадь, сокращается расход материалов и улучшает условия труда. Вместе с тем он требует дорогого и сложного оборудования, повышенного класса точности геометрической формы цилиндров и улучшенного качества медного слоя.
Для изготовления форм глубокой печати применяются специальные цилиндровые электронно-механические гравировальные автоматы, отличающиеся от автоматов для гравирования клише в основном увеличенными габаритами, большей схожестью и высокой скоростью гравирования. Принципы их работы во многом схожи.

Слайд 23

Электронно-механическое гравирование печатных форм. Общие сведения.

Например, автомат Гелиоклишограф-201 (ФРГ) состоит (рис. 9.6) из анализирующего

устройства а, гравирующего б и электронного блока в, а так же управляющего устройства г.

Слайд 24

Электронно-механическое гравирование печатных форм. Общие сведения.

Анализирующее устройство имеет съемный стальной цилиндр – оригиналодержатель 1

для удерживания воспроизводимых промежуточных оригиналов и несколько (до 8) анализирующих фотоголовок 2. В гравировальном устройстве размещается цилиндр 3, вдоль которого расположены (по числу фотоголовок) гравирующие головки 4 с алмазными резцами. Каждая фотоголовка управляет работой своей гравирующей головки, что дает возможность в несколько раз повысить производительность автомата.

Слайд 25

Электронно-механическое гравирование печатных форм. Технологии изготовления печатных форм.

Электронно-механическим гравированием чаще всего изготавливают формы с

непрозрачных промежуточных оригиналов, представляющие собой фотокопии монтажа негативов или диопозитивов, содержащих тоновые и штриховые изображения и текст. Фотокопии получают контактным способом на специальным непрозрачном галогенидосеребряном фотоматериале. Изготовление печатных форм с этих копий начинается с подготовки автомата к работе. для этого устанавливают в гравирующее устройство омедненный формный цилиндр. Ставят в исходное положение гравирующие головки и регулируют их резцы на заданную глубину резания.

Слайд 26

Электронно-механическое гравирование печатных форм. Технологии изготовления печатных форм.

Затем на анализирующем цилиндре укрепляется непрозрачная фотокопия

монтажа (например, журнального издания), устанавливают в исходное положение анализирующие фотоголовки и задается с помощью управляющего устройства (см. рис. 9.5, г) необходимый режим гравирования.

Слайд 27

Электронно-механическое гравирование печатных форм. Технологии изготовления печатных форм.

В процессе работы автомата отраженные от копии

оптические сигналы попадают в анализирующую фотоголовку, преобразуются в электрические сигналы, а затем в цифровую форму и запоминаются в электронном блоке (рис. 9.6, в), где происходит и их коррекция.

Слайд 28

Электронно-механическое гравирование печатных форм. Технологии изготовления печатных форм.

Далее сигналы последовательно вызываются из памяти, преобразу­ются

в аналоговую форму и управляют работой алмазного резца. Последний, совершая вибрационные движения, гравирует на поверхности формного цилиндра (со скоростью 4000 ячеек/с) печатающие элементы (см. рис. 9.1, г). Такое строение печатающих элементов обеспечивает не только хорошее качество воспроизведения изображения, но и большую тиражестойкость форм. Последнюю можно значительно (до 1—2 млн оттисков) повысить путем гальванического наращивания хрома.

Слайд 29

Электронно-механическое гравирование печатных форм. Технологии изготовления печатных форм.

Печатные формы, полученные всеми рассмотренными способами, контролируются

с помощью специальных приборов (в том числе электронных) и пробной печатью. В случае необходимости производят различными способами небольшой объем корректуры на отдельных участках формы. Готовая печатная форма должна отвечать техническим требованиям, предусматривающим необходимую града­ционную передачу тоновых изображений и глубину штриховых элементов (в том числе и текста); соответствие размеров диаметра формного цилиндра типу печатной машины и т. д.

Слайд 30

Лазерное и электронное гравирование печатных форм. Изготовление печатных форм лазерным гравированием.

Изготовление печатных форм лазерным

гравированием. Механи­ческий принцип получения печатающих элементов на ЭМГА ограничивает их скорость гравирования, а также приводит к быстрому износу дорогостоящих алмазных резцов. Для ускорения поэле­ментной записи изображения на формном цилиндре предложено гравирование лазерным излучением. Однако пока еще из-за малой мощности лазеров не представляется возможным с их помощью получить растровые элементы непосредственным испарением меди формного цилиндра. В связи с этим разработаны технологические варианты, в которых лазерное излучение, испаряя пластмассу, образует печатающие элементы.
Наибольший интерес представляет используемая в некоторых странах лазерная система Лазергравюр 700 (Великобритания), состоящая из комплекса устройств: от пополосного ввода оцифрованной информации изданий до никелирования готовых форм. Оцифровывание изображений и текста и электронный монтаж полос производится вне этой системы.

Слайд 31

Лазерное и электронное гравирование печатных форм. Изготовление печатных форм лазерным гравированием.

Сущность технологии изготовления формы

в системе Лазергравюр заключается в следующем. На стальной или омедненный формный цилиндр методом электростатического напыления наносится порошок эпоксидной смолы, который прочно фиксируется в результа­те последующего обжига и образует тонкий (250 мкм) блестящий слой. Оцифрованная информация полос (с учетом их спуска и других параметров) подается на гравирующее устройство и управляет модуляцией луча СО2 лазера. Последний гравирует отдельные ячейки эллипсообразной формы (с частотой 6—16 ячеек/мм).
В заключение на форму наносится тонкий слой никеля. Полученная печатная форма из-за высокой износостойкости эпоксидной смолы выдерживает большие (до 3 млн оттисков) тиражи. После печатания тиража цилиндры очищаются от смолы и подготовля­ются вновь По сравнению с электромеханическим способом лазерное гравирование значительно ускоряет процесс изготовления печатных форм (цилиндр подготавливается за 1,0—1,5 ч, а гравирование, например, цилиндра длиной 1,2 м продолжается 10 мин).

Слайд 32

Лазерное и электронное гравирование печатных форм. Изготовление печатных форм гравированием электронным лучом.

Изготовление печатных форм

гравированием электронным лучом. Этот способ изготовления печатных форм основан на использовании электронной пушки — вакуумного устройства для получения высокоинтенсивных электронных пучков (лучей). Они создают кратковременные импульсы с большой концентрацией энергии для «удара» по поверхности формного цилиндра. В результате этого происходит плавление и испарение частиц меди с образованием ячеек разного диаметра и глубины в соответствии с тональностью изображения.

Слайд 33

Лазерное и электронное гравирование печатных форм. Изготовление печатных форм гравированием электронным лучом.

Принцип такого гравирования

был впервые реализован в машине Электрон Бим Энгрейвинг (ФРГ, 1984). Она представляет собой большую вакуумную камеру, в которой помещаются формный цилиндр и гравирующее устройство. Последнее управляется от цифровых носителей изобразительной и текстовой информации. Процесс гравирования протекает в 30—40 раз быстрее, чем при электронно-механическом способе (100—150 тыс. ячеек/с), а геометрическая форма ячеек имеет среднее строение между сферической и цилиндри­ческой. Объем ячеек изменяется за счет изменения их диаметра (от 50 до 125 мкм) и глубины (от 3 до 58 мкм). Вредные излучения поглощаются полностью кожухом машины.
Рассматриваемый способ, обладая громадной скоростью гравиро­вания, дает возможность получать большие по объему ячейки, улучшающие характеристики переноса краски на бумагу при печатании, повышает качество воспроизведения текста и штриховых изображений. Однако из-за высокой стоимости оборудования (намного дороже ЭМГА) гравирование форм электронным лучом пока еще не получило широкого применения.

Слайд 34

Юлия Михайловна, мы вас любим!

Имя файла: Печатные-формы-глубокой-печати.pptx
Количество просмотров: 71
Количество скачиваний: 0