Биосенсоры. Иммобилизация фермента на поверхности электрода презентация

Содержание

Слайд 2

Scheme of biosensor action Transducer Biorecognition element Substrate recognition Coupling

Scheme of biosensor action

Transducer

Biorecognition
element

Substrate recognition

Coupling of biochemical and electrochemical reactions

Signal processing

Слайд 3

Requirements: detection directly in object without pretreatment; a possibility for

Requirements:

detection directly in object without pretreatment;
a possibility for continuous monitoring;
a possibility

for miniaturization;
low cost in case of mass production.
Слайд 4

History Glucose oxidase and Clark O2 electrode L. C. Clark,

History

Glucose oxidase and Clark O2 electrode

L. C. Clark, and C.

Lyons, Ann.NY Acad.Sci. 102, 29 (1962).
S. J. Updike, and J. P. Hiks, Nature 214, 986 (1967).
Слайд 5

Volume 102 Issue Automated and Semi-Automated Systems in Clinical Chemistry

Volume 102 Issue Automated and
Semi-Automated Systems in Clinical Chemistry ,

Pages 3 - 180
(October 1962)

A- электрод сравнения
B- рабочий электрод
C- цилиндр
D- электролит
E, G - мембраны
F- фермент

ИДЕЯ ФЕРМЕНТНОГО ЭЛЕКТРОДА

Слайд 6

3 June 1967 Vol 214 No 5092 pp957-1066 ИММОБИЛИЗАЦИЯ ФЕРМЕНТА НА ПОВЕРХНОСТИ ЭЛЕКТРОДА

3 June 1967 Vol 214 No 5092 pp957-1066

ИММОБИЛИЗАЦИЯ ФЕРМЕНТА НА ПОВЕРХНОСТИ

ЭЛЕКТРОДА
Слайд 7

ИММОБИЛИЗАЦИЯ ФЕРМЕНТА НА ПОВЕРХНОСТИ ЭЛЕКТРОДА ГЛЮКОЗА + O2 Глюкозоксидаза в

ИММОБИЛИЗАЦИЯ ФЕРМЕНТА НА ПОВЕРХНОСТИ ЭЛЕКТРОДА

ГЛЮКОЗА
+ O2

Глюкозоксидаза в акриламидном геле

ГЛЮКОНОВАЯ
КИСЛОТА
+

H2O2

O2

O2-датчик

Глюкоза + O2 → Глюконовая кислота + H2O2

глюкозоксидаза

Слайд 8

History (potentiometric) Glass pH electrode + immobilized urease: G. G.

History
(potentiometric)

Glass pH electrode + immobilized urease:
G. G. Guilbault, J. Montalvo. JACS

91 (1969) 2164
Слайд 9

ИММОБИЛИЗАЦИЯ ФЕРМЕНТА НА ПОВЕРХНОСТИ ЭЛЕКТРОДА

ИММОБИЛИЗАЦИЯ ФЕРМЕНТА НА ПОВЕРХНОСТИ ЭЛЕКТРОДА

Слайд 10

History (optic) G. G. Guilbault, NATO report (1956) ?????

History
(optic)

G. G. Guilbault, NATO report (1956) ?????

Слайд 11

Biorecognition modes Productive Nonproductive Enzymes Antigen-antibody Ligand-receptor DNA

Biorecognition modes

Productive

Nonproductive

Enzymes

Antigen-antibody
Ligand-receptor
DNA

Слайд 12

Слайд 13

Antigen binding Immunoglobulin

Antigen binding

Immunoglobulin

Слайд 14

DNA

DNA

Слайд 15

Transducer types Electrochemical Optic Gravimetric Thermistors Δf ~Δm

Transducer types

Electrochemical

Optic

Gravimetric

Thermistors

Δf ~Δm

Слайд 16

Quartz crystal microbalance G. Sauerbrey,1959

Quartz crystal microbalance

G. Sauerbrey,1959

Слайд 17

Quartz crystal microbalance 5-10 MHz 0.1-0.01 Hz 0.1 – 0.01 ng cm-2

Quartz crystal microbalance

5-10 MHz <-> 0.1-0.01 Hz
0.1 – 0.01 ng

cm-2
Слайд 18

Surface plasmon resonance

Surface plasmon resonance

Слайд 19

Surface plasmon resonance

Surface plasmon resonance

Слайд 20

Coupling of the enzyme and the electrode reactions I generation:

Coupling of the enzyme and the electrode reactions

I generation: detection

of the coupled substrate or side product

II generation : the use of mediators

III generation : direct bioelectrocatalysis

Слайд 21

Ist generation biosensors (amperometric) Glucose oxidase and Clark O2 electrode

Ist generation biosensors

(amperometric)

Glucose oxidase and Clark O2 electrode

Слайд 22

(potentiometric) Ist generation biosensors Glass pH electrode + immobilized urease:

(potentiometric)

Ist generation biosensors

Glass pH electrode + immobilized urease:
G. G. Guilbault, J.

Montalvo. JACS 91 (1969) 2164
Слайд 23

Potentiometric biosensors Use the enzymes from almost all groups Transducer:

Potentiometric biosensors

Use the enzymes from almost all groups

Transducer:
glass Ph

electrode
field effect transistor
modified electrode
Слайд 24

IInd generation biosensors A. E. G. Cass, G. Davis, G.

IInd generation biosensors

A. E. G. Cass, G. Davis, G. D. Francis,

H. A. O. Hill, W. G. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner, Analytical Chemistry 56, 667-671 (1984).
Слайд 25

What Is Diabetes? Can cause: Blindness Heart attack Poor circulation

What Is Diabetes?

Can cause:
Blindness
Heart attack
Poor circulation
Gangrene
Kidney dysfunction
Death

No cure, but glucose

monitoring
can prevent long-term problems
Слайд 26

Glucose tests

Glucose tests

Слайд 27

More than 33 different meters are commercially available from 11

More than 33 different meters are commercially available from 11 companies.

They differ in several ways including:
Amount of blood needed for each test
Testing speed
Alternative site
Overall size
Ability to store test results in memory
Cost of the meter
Cost of the test strips used
Слайд 28

Blood Volume Requirements of Test Strips

Blood Volume Requirements of Test Strips

Слайд 29

Meter Testing Times

Meter Testing Times

Слайд 30

IInd generation biosenors B.A. Gregg, A. Heller. Anal. Chem. 62 (1990) 258

IInd generation biosenors

B.A. Gregg, A. Heller. Anal. Chem. 62 (1990) 258


Слайд 31

Wiring of glucose oxidase Heller, A. Physical Chemistry Chemical Physics

Wiring of glucose oxidase

Heller, A. Physical Chemistry Chemical Physics 2004, 6,

209-216.

E = -0.195 mV (Ag|AgCl)

Слайд 32

Glucose test Therasense: 0.3 µL of blood

Glucose test

Therasense:
0.3 µL of blood

Слайд 33

Enzyme bioelectrocatalysis

Enzyme bioelectrocatalysis

Слайд 34

BIOELECTROCATALYSIS (Berezin I. V., Bogdanovskaya V. A., Varfolomeev S.D. et

BIOELECTROCATALYSIS

(Berezin I. V., Bogdanovskaya V. A., Varfolomeev S.D. et al. Dokl.Akad.Nauk

SSSR (Proc. Acad. Sci.) 240 (1978) 615-618)
Слайд 35

Direct enzyme bioelectrocatalysis

Direct enzyme bioelectrocatalysis

Слайд 36

Protein electroactivity Cytochrome C S.R. Betso, M.H. Klapper, L.B. Anderson.

Protein electroactivity

Cytochrome C

S.R. Betso, M.H. Klapper, L.B. Anderson. J. Am. Chem.

Soc. 94 (1972) 8197-204.
M.R. Tarasevich, V.A. Bogdanovskaya. Bioelectrochem. Bioenerg. 3 (1976) 589-95.
M.J. Eddowes, H.A.O. Hill. J. Chem. Soc. , Chem. Commun. (1977) 71
P. Yeh, T. Kuwana. Chem. Lett. (1977) 1145-8
Niki K, Yagi T, Inokuchi H, Kimura K. JACS 101 (1979) 3335-40.
Слайд 37

ВОССТАНОВЛЕНИЕ ЦИТОХРОМА С НА ПОВЕРХНОСТИ ЭЛЕКТРОДА Fe3+ + e → Fe2+

ВОССТАНОВЛЕНИЕ ЦИТОХРОМА С НА ПОВЕРХНОСТИ ЭЛЕКТРОДА

Fe3+ + e → Fe2+

Слайд 38

Promoters for protein electroactivity M.J. Eddowes, H.A.O. Hill. J. Chem.

Promoters for protein electroactivity

M.J. Eddowes, H.A.O. Hill. J. Chem. Soc. ,

Chem. Commun. (1977) 71
P. Yeh, T. Kuwana. Chem. Lett. (1977) 1145-8

gold

Слайд 39

ОБРАТИМЫЙ ПЕРЕНОС ЭЛЕКТРОНА С ЦИТОХРОМА С НА ПОВЕРХНОСТЬ ЭЛЕКТРОДА

ОБРАТИМЫЙ ПЕРЕНОС ЭЛЕКТРОНА С ЦИТОХРОМА С НА ПОВЕРХНОСТЬ ЭЛЕКТРОДА

Слайд 40

J. Chem. Soc. , Chem. Commun. (1977) 71 ОБРАТИМЫЙ ПЕРЕНОС

J. Chem. Soc. , Chem. Commun. (1977) 71

ОБРАТИМЫЙ ПЕРЕНОС ЭЛЕКТРОНА С

ЦИТОХРОМА С НА ПОВЕРХНОСТЬ ЭЛЕКТРОДА
Слайд 41

Berezin I. V., Bogdanovskaya V. A., Varfolomeev S.D., M.R. Tarasevich,

Berezin I. V., Bogdanovskaya V. A., Varfolomeev S.D., M.R. Tarasevich, A.I

Yaropolov.
Dokl.Akad.Nauk SSSR (Proc. Acad. Sci.) 240 (1978) 615-618

Direct bioelectrocatalysis

Est = 1.2 V

Слайд 42

Enzymes for direct bioelectrocatalysis Others

Enzymes for direct bioelectrocatalysis

Others

Слайд 43

A.I Yaropolov, V. Malovik, Varfolomeev S.D., Berezin I. V. Dokl.Akad.Nauk

A.I Yaropolov, V. Malovik, Varfolomeev S.D., Berezin I. V.
Dokl.Akad.Nauk SSSR (Proc.

Acad. Sci.) 249 (1979) 1399-401

Direct bioelectrocatalysis

Слайд 44

A.I. Yaropolov, A.A. Karyakin, S.D. Varfolomeyev, I.V. Berezin. Bioelectrochem. Bioenerg. 12 (1984) 267-77 Direct bioelectrocatalysis

A.I. Yaropolov, A.A. Karyakin, S.D. Varfolomeyev, I.V. Berezin.
Bioelectrochem. Bioenerg. 12

(1984) 267-77

Direct bioelectrocatalysis

Слайд 45

BIOELECTROCATALYSIS by Th. roseopersicina hydrogenase (1), (3) - H2 ;

BIOELECTROCATALYSIS by Th. roseopersicina hydrogenase

(1), (3) - H2 ; (2)

- Ar
(3) - without active enzyme
Слайд 46

Equilibrium hydrogen potential (100% energy conversion)

Equilibrium hydrogen potential (100% energy conversion)

Слайд 47

Bioelectrocatalysis active site electron transport chain protein orientation; electroactivity of terminal group;

Bioelectrocatalysis

active site

electron
transport
chain

protein orientation;
electroactivity of terminal group;

Слайд 48

Direct bioelectrocatalysis

Direct bioelectrocatalysis

Слайд 49

Effect of promoter

Effect of promoter

Слайд 50

Cellobiose dehydrogenase из Myriococcum thermophilum

Cellobiose dehydrogenase из Myriococcum thermophilum

Слайд 51

Improvement of CDH bioelectrocatalysis with polyaniline

Improvement of CDH bioelectrocatalysis with polyaniline

Слайд 52

Surface design by polypyrrole

Surface design by polypyrrole

Слайд 53

Different hydrogenases in bioelectrocatalysis A. A. Karyakin, S. V. Morozov,

Different hydrogenases in bioelectrocatalysis

A. A. Karyakin, S. V. Morozov, E. E.

Karyakina, N. A. Zorin, V. V. Perelygin, S. Cosnier. Biochemical Society Transactions 33 (2005) 73-5
Слайд 54

A.A. Karyakin, S.V. Morozov, O.G. Voronin, et. al. Angewandte Chemie

A.A. Karyakin, S.V. Morozov, O.G. Voronin, et. al. Angewandte Chemie 46

(2007) 7244

Limiting performance characteristics of hydrogenases in bioelectrocatalysis

Слайд 55

Enzyme orientation: limiting efficiency in bioelectrocatalysis

Enzyme orientation: limiting efficiency in bioelectrocatalysis

Слайд 56

Hydrogen-oxygen energy sources

Hydrogen-oxygen energy sources

Слайд 57

Hydrogen-oxygen fuel cell

Hydrogen-oxygen fuel cell


Слайд 58

Problems with Pt-based electrodes Cost and availability; Poisoning with CO, H2S etc.; Low selectivity.

Problems with Pt-based electrodes

Cost and availability;
Poisoning with CO, H2S

etc.;
Low selectivity.
Слайд 59

Fuel cell cost problems 1 kW $ 10 000 $ 500 000

Fuel cell cost problems

1 kW

$ 10 000

$ 500 000

Слайд 60

Dynamics of Pt cost

Dynamics of Pt cost

Слайд 61

Available amount of Pt Annual production: 130 tonnes Assured resources:

Available amount of Pt

Annual production:
130 tonnes

Assured resources:
100 000 tonnes

every year: >60

· 106 cars

50 kW engines

> 6 000 tonnes Pt

2 g of Pt per kW

Слайд 62

Poisoning by fuel impurities Reforming gas (H2): 1÷2.5 % of

Poisoning by fuel impurities

Reforming gas (H2):

1÷2.5 % of CO

Pt electrodes:


under 0.1% CO activity irreversibly decreases 100 times after 10 min;
inactivation by H2S is 100 times more efficient.

Solution:
increase of potential

Слайд 63

Low selectivity problems Contamination of electrode space Pt – catalyst

Low selectivity problems

Contamination of electrode space

Pt – catalyst of both H2

oxidation and O2 reduction
Слайд 64

Comparison with Pt-based fuel electrode D. baculatum hydrogenase electrode, pH

Comparison with Pt-based fuel electrode

D. baculatum hydrogenase electrode, pH 7

Pt-vulcan, 1

M H2SO4

Pt-vulcan, pH 7

A.A. Karyakin, S.V. Morozov, O.G. Voronin, N.A. Zorin, E.E. Karyakina, V.N. Fateyev,
S. Cosnier. Angewandte Chemie 46 (2007) 7244-6.

Слайд 65

Hydrogen-oxygen biofuel cell

Hydrogen-oxygen biofuel cell

Слайд 66

Direct bioelectrocatalysis by intact cells

Direct bioelectrocatalysis by intact cells

Слайд 67

Cell membrane

Cell membrane

Слайд 68

Respiratory in mitochondrion

Respiratory in mitochondrion

Слайд 69

Bacterial cell membranes

Bacterial cell membranes

Слайд 70

Inorganic ion reducing bacteria Shewanella putrefaciens Lactate as electron donor Insoluble Fe3+ as electron acceptor

Inorganic ion reducing bacteria

Shewanella putrefaciens

Lactate as electron donor
Insoluble Fe3+ as electron acceptor

Слайд 71

Electroactivity of Shewanella putrefaciens A – air exposed cells B

Electroactivity of Shewanella putrefaciens

A – air exposed cells
B – air exposed

with lactate
C – no air, but at + 200 mV
D – at +200 mV with lactate

Kim, B. H.; Ikeda, T.; Park, H. S.; Kim, H. J.; Hyun, M. S.; Kano, K.; Takagi, K.; Tatsumi, H. Biotechnology Techniques 1999, 13, 475-478.

Слайд 72

Geobacter sulfurreducens on graphite electrode Bond, D. R.; Lovley, D.

Geobacter sulfurreducens on graphite electrode

Bond, D. R.; Lovley, D. R. Applied

And Environmental Microbiology 2003, 69, 1548.
Слайд 73

Acetate enriched consortium on graphite electrode Lee, J. Y.; Phung,

Acetate enriched consortium on graphite electrode

Lee, J. Y.; Phung, N. T.;

Chang, I. S.; Kim, B. H.; Sung, H. C. Fems Microbiology Letters 2003, 223, 185-191.
Слайд 74

Current response of Desulfobulbus propionicus Holmes, D. E.; Bond, D.

Current response of Desulfobulbus propionicus

Holmes, D. E.; Bond, D. R.; Lovley,

D. R. Applied And Environmental Microbiology 2004, 70, 1234-1237.
Имя файла: Биосенсоры.-Иммобилизация-фермента-на-поверхности-электрода.pptx
Количество просмотров: 95
Количество скачиваний: 0