Методы наблюдения и регистрации элементарных частиц презентация

Содержание

Слайд 2

Счётчик Гейгера

Камера Вильсона


Пузырьковая камера

Фотографические

эмульсии

Сцинтилляционный
метод

Методы наблюдения и регистрации элементарных частиц

Искровая камера

Слайд 3

Сцинтилляционный счётчик, прибор для регистрации ядерных излучений и элементарных частиц (протонов, нейтронов, электронов,

y - квантов, мезонов и т. д.). Основным элементом счетчика является вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор).

При попадании заряженной частицы на полупрозрачный экран, покрытый сульфидом цинка, возникает вспышка света (СЦИНТИЛЛЯЦИЯ). Вспышку можно наблюдать и фиксировать.

Прибор состоит из сцинтиллятора, фотоэлектронного умножителя и электронной системы.

Слайд 4

Счетчик Гейгера.

Схема

Фотография

Ханс Гейгер

В газоразрядном счетчике имеются катод в виде цилиндра и анод в

виде тонкой проволоки по оси цилиндра. Пространство между катодом и анодом заполняется специальной смесью газов. Между катодом и анодом прикладывается напряжение.

U

Слайд 5

+

-

R

К усилителю

Стеклянная трубка

Анод

Катод

Счётчик Гейгера применяется в основном для регистрации электронов и y -

квантов(фотонов большой энергии).
Счётчик регистрирует почти все падающие в него электроны.
Регистрация сложных частиц затруднена.

Счетчик Гейгера.

Чтобы зарегистрировать y- кванты, стенки трубки покрывают специальным материалом, из которого они выбивают электроны.

Слайд 6

Камеру Вильсона можно назвать “окном” в микромир. Она представляет собой герметично закрытый сосуд,

заполненный парами воды или спирта, близкими к насыщению.

Стеклянная
пластина

поршень

вентиль

Вильсон- английский физик, член Лондонского королевского общества. Изобрёл в 1912 г прибор для наблюдения и фотографирования следов заряжённых частиц, впоследствии названную камерой Вильсона (Нобелевская премия, 1927).

Камера Вильсона
Советские физики П.Л. Капица и Д.В. Скобельцин предложили помещать камеру Вильсона в однородное магнитное поле.

Слайд 7

Если частицы проникают в камеру, то на их пути возникают капельки воды. Эти

капельки образуют видимый след пролетевшей частицы - трек. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины оценивается её скорость. Трек имеет кривизну.

Первое искусственное превращение элементов – взаимодействие α − частицы с ядром азота, в результате которого образовались ядро кислорода и протон.

Слайд 8

Заряжённые частицы создают скрытые изображения следа движения.

По длине и толщине трека можно оценить

энергию и массу частицы.

Фотоэмульсия имеет большую плотность, поэтому треки
получаются короткими.

Фотографические эмульсии

Метод толстослойных фотоэмульсий. 20-е г.г. Л.В.Мысовский, А.П.Жданов.

Треки элементарных частиц в толстослойной фотоэмульсии

Наиболее дешевым методом регистрации ионизирующего излучения является фотоэмульсионный (или метод толстослойных эмульсий). Он базируется на том, что заряженная частица, двигаясь в фотоэмульсии, разрушает молекулы бромида серебра в зернах, сквозь которые прошла. После проявления такой пластинки в ней возникают «дорожки» из осевшего серебра, хорошо видимые в микроскоп. Каждая такая дорожка — это след движущейся частицы. По характеру видимого следа (его длине, толщине и т. п.) можно судить как о свойствах частицы, которая оставила след (ее энергии, скорости, массе, направлении движения), так и о характере процесса (рассеивание, ядерная реакция, распад частиц), если он произошел в эмульсии.

Имя файла: Методы-наблюдения-и-регистрации-элементарных-частиц.pptx
Количество просмотров: 68
Количество скачиваний: 0