Виды архитектуры Персонального компьютера презентация

Содержание

Слайд 2

Цель работы

Узнать о видах Архитектуры пк.

Рассмотреть Архитектуру Фон Неймана и Гарвардскую архитектуру.

Задачи

Слайд 3

Архитектура Фон Неймана.

Широко известный принцип совместного хранения программ и данных в памяти компьютера.

Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако, соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных. Нейману удалось обобщить научные разработки и открытия многих других ученых и сформулировать на их основе принципы этого подхода:

Слайд 4

Использование двоичной системы счисления в вычислительных машинах. Преимущество перед десятичной системой счисления заключается

в том, что устройства можно делать достаточно простыми, арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто.
Программное управление ЭВМ. Работа ЭВМ контролируется программой, состоящей из набора команд. Команды выполняются последовательно друг за другом. Созданием машины с хранимой в памяти программой было положено начало тому, что мы сегодня называем программированием.
Память компьютера используется не только для хранения данных, но и программ. При этом и команды программы и данные кодируются в двоичной системе счисления, т.е. их способ записи одинаков. Поэтому в определенных ситуациях над командами можно выполнять те же действия, что и над данными.
Ячейки памяти ЭВМ имеют адреса, которые последовательно пронумерованы. В любой момент можно обратиться к любой ячейке памяти по ее адресу. Этот принцип открыл возможность использовать переменные в программировании.
Возможность условного перехода в процессе выполнения программы. Не смотря на то, что команды выполняются последовательно, в программах можно реализовать возможность перехода к любому участку кода.

Слайд 5

Самым главным следствием этих принципов можно назвать то, что теперь программа уже не

была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. А вот аппаратура, конечно же, остается неизменной, и очень простой.
В соответствии с принципами фон Неймана компьютер состоит из арифметико-логического устройства — АЛУ (англ. ALU, Arithmetic and Logic Unit), выполняющего арифметические и логические операции; устройства управления, предназначенного для организации выполнения программ; запоминающих устройств (ЗУ), в т.ч. оперативного запоминающего устройства (ОЗУ) и внешнего запоминающего устройства (ВЗУ); внешних устройств для ввода-вывода данных.
Программы и данные вводятся в память из устройства ввода через арифметико-логическое устройство. Все команды программы записываются в соседние ячейки памяти, а данные для обработки могут содержаться в произвольных ячейках. У любой программы последняя команда должна быть командой завершения работы.
Команда состоит из указания, какую операцию следует выполнить (из возможных операций на данном «железе») и адресов ячеек памяти, где хранятся данные, над которыми следует выполнить указанную операцию, а также адреса ячейки, куда следует записать результат (если его требуется сохранить в ЗУ).

Слайд 6

Из арифметико-логического устройства результаты выводятся в память или устройство вывода. Принципиальное различие между

ЗУ и устройством вывода заключается в том, что в ЗУ данные хранятся в виде, удобном для обработки компьютером, а на устройства вывода (принтер, монитор и др.) поступают так, как удобно человеку. УУ управляет всеми частями компьютера. От управляющего устройства на другие устройства поступают сигналы «что делать», а от других устройств УУ получает информацию об их состоянии.
Управляющее устройство содержит специальный регистр (ячейку), который называется «счетчик команд». После загрузки программы и данных в память в счетчик команд записывается адрес первой команды программы. УУ считывает из памяти содержимое ячейки памяти, адрес которой находится в счетчике команд, и помещает его в специальное устройство — «Регистр команд». УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды. Операцию выполняет АЛУ или аппаратные средства компьютера.
В результате выполнения любой команды счетчик команд изменяется на единицу и, следовательно, указывает на следующую команду программы. Когда требуется выполнить команду, не следующую по порядку за текущей, а отстоящую от данной на какое-то количество адресов, то специальная команда перехода содержит адрес ячейки, куда требуется передать управление.

Слайд 7

Гарвардская архитектура.

Гарвардская архитектура была разработана Говардом Эйкеном в конце 1930-х годов в Гарвардском

университете с целью увеличить скорость выполнения вычислительных операций и оптимизировать работу памяти. Она характеризуется физическим разделением памяти команд (программ) и памяти данных. В ее оригинальном варианте использовался также отдельный стек для хранения содержимого программного счетчика, который обеспечивал возможности выполнения вложенных подпрограмм. Каждая память соединяется с процессором отдельной шиной, что позволяет одновременно с чтением-записью данных при выполнении текущей команды производить выборку и декодирование следующей команды. Благодаря такому разделению потоков команд и данных и совмещению операций их выборки реализуется более высокая производительность, чем при использовании Принстонской архитектуры.

Слайд 8

Недостатки Гарвардской архитектуры связаны с необходимостью проведения большего числа шин, а также с

фиксированным объемом памяти, выделенной для команд и данных, назначение которой не может оперативно перераспределяться в соответствии с требованиями решаемой задачи. Поэтому приходится использовать память большего объема, коэффициент использования которой при решении разнообразных задач оказывается более низким, чем в системах с Принстонской архитектурой. Однако развитие микроэлектронной технологии позволило в значительной степени преодолеть указанные недостатки, поэтому Гарвардская архитектура широко применяется во внутренней структуре современных высокопроизводительных микропроцессоров, где используется отдельная кэш-память для хранения команд и данных. В то же время во внешней структуре большинства микропроцессорных систем реализуются принципы Принстонской архитектуры.[

Слайд 9

 (англ. Massive Parallel Processing, MPP) — класс архитектур параллельных вычислительных систем Особенность архитектуры состоит

в том, что память физически разделена. Система строится из отдельных модулей, содержащих процессор, локальный банк операционной памяти, коммуникационные процессоры или сетевые адаптеры, иногда — жесткие диски и/или другие устройства ввода/вывода. Доступ к банку операционной памяти из данного модуля имеют только процессоры из этого же модуля. Модули соединяются специальными коммуникационными каналами. в отличие от SMP-систем, в машинах с раздельной памятью каждый процессор имеет доступ только к своей локальной памяти, в связи с чем не возникает необходимости в потактовой синхронизации процессоров..

Массивно-параллельная архитектура.

Слайд 10

Распределённые вычисления. 

метакомпьютинг (англ. grid — сеть) - способ решения трудоёмких вычислительных задач с

использованием нескольких компьютеров, объединённых в параллельную вычислительную систему (одновременное решения различных частей одной вычислительной задачи несколькими процессорами (или ядрами одного процессора) одного или нескольких компьютеров)

Закрытая архитектура.

это архитектура, спецификации которой не опубликованы, либо в них не предусмотрено подключение устройств и дополнительных плат.

Имя файла: Виды-архитектуры-Персонального-компьютера.pptx
Количество просмотров: 12
Количество скачиваний: 0