Basic principles of ultrasonic testing презентация

Содержание

Слайд 2

Krautkramer NDT Ultrasonic Systems

Examples of oscillation

ball on a spring

pendulum

rotating earth

Слайд 3

Krautkramer NDT Ultrasonic Systems

The ball starts to oscillate as soon as it is

pushed

Слайд 4

Krautkramer NDT Ultrasonic Systems

Слайд 5

Krautkramer NDT Ultrasonic Systems

Movement of the ball over time

Слайд 6

Krautkramer NDT Ultrasonic Systems

Time

One full oscillation T

Frequency

From the duration of one oscillation T

the frequency f (number of oscillations per second) is calculated:

Слайд 7

Krautkramer NDT Ultrasonic Systems

180

360

90

270

Phase

Time

a

0

The actual displacement a is termed as:

Слайд 8

Krautkramer NDT Ultrasonic Systems

Spectrum of sound

Frequency range Hz

Description

Example

0 - 20

Infrasound

Earth quake

20 - 20.000

Audible

sound

Speech, music

> 20.000

Ultrasound

Bat, Quartz crystal

Слайд 9

Krautkramer NDT Ultrasonic Systems

gas

liquid

solid

Atomic structures

low density
weak bonding forces

medium density
medium bonding forces

high density
strong

bonding forces
crystallographic structure

Слайд 10

Krautkramer NDT Ultrasonic Systems

Understanding wave propagation:

Spring = elastic bonding force

Ball = atom

Слайд 11

Krautkramer NDT Ultrasonic Systems

T

distance travelled

start of oscillation

Слайд 12

Krautkramer NDT Ultrasonic Systems

T

Distance travelled

From this we derive:

or

Wave equation

During one oscillation T the

wave front propagates by the distance λ:

Слайд 13

Krautkramer NDT Ultrasonic Systems

Direction of oscillation

Direction of propagation

Longitudinal wave

Sound propagation

Слайд 14

Krautkramer NDT Ultrasonic Systems

Transverse wave
Direction of oscillation

Sound propagation

Слайд 15

Krautkramer NDT Ultrasonic Systems

Wave propagation

Longitudinal waves propagate in all kind of materials.
Transverse waves

only propagate in solid bodies.
Due to the different type of oscillation, transverse waves travel at lower speeds.
Sound velocity mainly depends on the density and E-modulus of the material.

Слайд 16

Krautkramer NDT Ultrasonic Systems

Reflection and Transmission

As soon as a sound wave comes to

a change in material characteristics ,e.g. the surface of a workpiece, or an internal inclusion, wave propagation will change too:

Слайд 17

Krautkramer NDT Ultrasonic Systems

Behaviour at an interface

Medium 1

Medium 2

Interface

Incoming wave

Transmitted wave

Reflected wave

Слайд 18

Krautkramer NDT Ultrasonic Systems

Reflection + Transmission: Perspex - Steel

Incoming wave

Transmitted wave

Reflected wave

Perspex

Steel

1,87

1,0

0,87

Слайд 19

Krautkramer NDT Ultrasonic Systems

Reflection + Transmission: Steel - Perspex

0,13

1,0

-0,87

Perspex

Steel

Incoming wave

Transmitted wave

Reflected wave

Слайд 20

Krautkramer NDT Ultrasonic Systems

Amplitude of sound transmissions:

Strong reflection
Double transmission

No reflection
Single transmission

Strong reflection

with inverted phase
No transmission

Water - Steel

Copper - Steel

Steel - Air

Слайд 21

Krautkramer NDT Ultrasonic Systems

Piezoelectric Effect

Piezoelectrical
Crystal (Quartz)

Battery

Слайд 22

Krautkramer NDT Ultrasonic Systems

The crystal gets thicker, due to a distortion of the

crystal lattice

Piezoelectric Effect

Слайд 23

Krautkramer NDT Ultrasonic Systems

The effect inverses with polarity change

Piezoelectric Effect

Слайд 24

Krautkramer NDT Ultrasonic Systems

An alternating voltage generates crystal oscillations at the frequency f


U(f)

Sound wave with frequency f

Piezoelectric Effect

Слайд 25

Krautkramer NDT Ultrasonic Systems

A short voltage pulse generates an oscillation at the crystal‘s

resonant
frequency f0

Short pulse
( < 1 µs )

Piezoelectric Effect

Слайд 26

Krautkramer NDT Ultrasonic Systems

Reception of ultrasonic waves

A sound wave hitting a piezoelectric crystal,

induces crystal vibration which then causes electrical voltages at the crystal surfaces.

Electrical
energy

Piezoelectrical crystal

Ultrasonic wave

Слайд 27

Krautkramer NDT Ultrasonic Systems

Ultrasonic Probes

Слайд 28

Krautkramer NDT Ultrasonic Systems

RF signal (short)

Слайд 29

Krautkramer NDT Ultrasonic Systems

RF signal (medium)

Слайд 30

Krautkramer NDT Ultrasonic Systems

Sound field

Слайд 31

Krautkramer NDT Ultrasonic Systems

Ultrasonic Instrument

Слайд 32

Krautkramer NDT Ultrasonic Systems

Ultrasonic Instrument

Слайд 33

Krautkramer NDT Ultrasonic Systems

Ultrasonic Instrument

Слайд 34

Krautkramer NDT Ultrasonic Systems

Ultrasonic Instrument

Слайд 35

Krautkramer NDT Ultrasonic Systems

Block diagram: Ultrasonic Instrument

Слайд 36

Krautkramer NDT Ultrasonic Systems

Sound reflection at a flaw

Probe

Flaw

Sound travel path

Work piece

s

Слайд 37

Krautkramer NDT Ultrasonic Systems

Plate testing

Слайд 38

Krautkramer NDT Ultrasonic Systems

0

2

4

6

8

10

s

s

Wall thickness measurement

Corrosion

Слайд 39

Krautkramer NDT Ultrasonic Systems

Through transmission testing

Слайд 40

Krautkramer NDT Ultrasonic Systems

Weld inspection

Слайд 41

Krautkramer NDT Ultrasonic Systems

Straight beam inspection techniques:

Имя файла: Basic-principles-of-ultrasonic-testing.pptx
Количество просмотров: 103
Количество скачиваний: 0