Презентации по Биологии

Анатомия уха
Анатомия уха
Наружное ухо представлено ушной раковиной и наружным слуховым проходом. Ушная раковина (auricula) располагается между височнонижнечелюстным суставом спереди и сосцевидным отростком сзади. Основу ее составляет пластинка эластического хряща толщиной 0.5-1 мм, покрытая с обеих сторон надхрящницей и кожей. Только нижняя часть ушной раковины - мочка (lobulus) - лишена хрящевого остова и образована жировой клетчаткой, покрытой кожей. Наружная поверхность ушной раковины вогнутая, кожа на ней плотно сращена с надхрящницей. Внутренняя поверхность раковины выпуклая, здесь более развита соединительная ткань между кожей и надхрящницей.  Свободный край ушной раковины представлен в виде закругленного валика - завитка (helix), который начинается своей ножкой (crus helices) над входом в наружный слуховой проход (porus acusticus externus) и тянется кверху, затем кзади и вниз. Внутри и параллельно завитку в виде валика располагается противозавиток (anthelix). Между ними имеется продольное углубление - ладья (scapha). Кпереди от противозавитка находится углубление, которое обозначается как полость ушной раковины (cavum conchae), воронкообразно углубляясь, оно ведет во вход в наружный слуховой проход. Спереди находится выступающая часть наружного слухового прохода - козелок (tragus), а сзади другой выступ - противокозелок (antitragus), внизу между ними имеется глубокая вырезка (incisura intertragica).
Продолжить чтение
Вітаміни
Вітаміни
Що ж таке вітаміни? Вітамі́ни — речовини, що містять аміногрупу (-NH2) — низькомолекулярні органічні сполуки різної хімічної природи, що необхідні для життєдіяльності живого організму в малих дозах, і не утворюються в самому цьому організмі в достатній кількості, через що повинні надходити із їжею. Організму людини необхідні принаймні 13 різних вітамінів, добові потреби яких коливаються від 0,01 до 100 мг Історія відкриття вітамінів В 1881 р. російським вченим Н.Луніним було встановлено, що миші гинуть, якщо їх годувати абсолютно очищеною сумішшю, якщо ж додати в раціон 1 мл молока, миші залишаються здоровими В 1911-1912 рр. Польський вчений Казимир Функ виділив з рисових висівок препарат і назвав його вітаміном, доказав його ефективність у лікуванні хвороби бері-бері. З цього часу почалось інтенсивне вивчення вітамінів. Вітаміни позначають латинськими буквами A,B,C,D,E,F,P і так далі. На данний момент більшість вітамінів виділено в чистому виді, або синтезовано і їх використовують в фармацефтичній промисловості, в якості лікарських препаратів. Вітаміни поділяють на водорозчинні та жиророзчинні(за їх фізико-хімічними властивостями)
Продолжить чтение
Естественный отбор
Естественный отбор
Механизм естественного отбора: Признание концепция естественного отбора получила после того, как в 1858 году английские учёные Чарльз Дарвин и Альфред Уоллес изложили идею о том, что в живой природе действует механизм, подобный искусственному отбору, и в особенности после выхода в свет в 1859 году книги Дарвина «Происхождение видов». Достаточно создавать широкий спектр разнообразных особей — и, в конечном счёте, выживут наиболее приспособленные. 1.Сначала появляется особь с новыми, совершенно случайными, свойствами 2.Потом она оказывается или не оказывается способной оставить потомство, в зависимости от этих свойств 3.Наконец, если исход предыдущего этапа оказывается положительным, то она оставляет потомство и её потомки наследуют новоприобретённые свойства Формы естественного отбора: Существуют разные классификации форм отбора. Широко используется классификация, основанная на характере влияния форм отбора на изменчивость признака в популяции. 1.Движущий отбор — форма естественного отбора, которая действует при направленном изменении условий внешней среды. 2.Стабилизирующий отбор — форма естественного отбора, при которой его действие направлено против особей, имеющих крайние отклонения от средней нормы, в пользу особей со средней выраженностью признака.
Продолжить чтение
Растениеводство. Научные основы севооборотов и принципы их построения
Растениеводство. Научные основы севооборотов и принципы их построения
История развития научных основ севооборотов Необходимость чередования сельскохозяйственных культур издавна установлена практикой земледелия. О зависимости растений от внешних условий хорошо знали первые земледельцы 10-15 тыс. лет назад. Чередование культур на полях применяли в Египте, Китае и Индии 5 тысячелетий назад. Многие ученые Древнего Рима знали о пользе чередования культур, но причины этого явления агрономической наукой длительное время не были установлены. Одной из первых попыток объяснить это была теория, выдвинутая в 1813 г. швейцарским ботаником Декандолем. Он считал, что растения берут из почвы и нужные, и ненужные вещества. Ненужные вещества, выделяясь обратно в почву, накапливаются в ней и задерживают развитие повторно высеваемой на одном и том же месте культуры. П. А. Костычев и В. Р. Вильямс объясняли падение плодородия почвы при возделывании однолетних культур ухудшением ее физических свойств и, в частности, утратой прочной структуры. В результате ухудшились водный и пищевой режимы, развивалась эрозия почвы. Поэтому был сделан вывод о необходимости периодической смены однолетних культур посевом смеси многолетних бобово-злаковых трав. Теория легла в основу травовополъных севооборотов. Л.В.Советов (1826-1901) придавал большое значение фитосанитарному фактору при обосновании необходимости чередования культур. Накопление в почве возбудителей болезней, вредителей и сорняков он считал одной из важнейших причин падения урожаев при повторной и бессменной культуре. Недостаток указанных теорий заключался в их односторонности, отсутствии комплексного подхода и учета многообразия причин при 'обосновании необходимости чередования культур. История развития научных основ севооборотов
Продолжить чтение
Генная инженерия
Генная инженерия
Генной инженерия. Что это? Генетическая инженерия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНКГенетическая инженерия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНКГенетическая инженерия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения геновГенетическая инженерия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организмаГенетическая инженерия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. Генетическая инженерия не является наукойГенетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологииГенетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярнаяГенетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточнаяГенетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитологияГенетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетикаГенетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиологияГенетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология. ГЕННАЯ ИНЖЕНЕРИЯ, или технология рекомбинантных ДНК, изменение с помощью биохимических и генетических методик хромосомного материала – основного наследственного вещества клеток. Хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Биологи изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. История развития и достигнутый уровень технологии Во второй половине ХХ века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером Во второй половине ХХ века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом Во второй половине ХХ века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии Во второй половине ХХ века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 Во второй половине ХХ века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках — это мутации. Они происходят под действием, например, мутагенов — химических ядов или излучений. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.
Продолжить чтение