Меры начальной остойчивости

Содержание

Слайд 2

Вопросы лекции Пример использования метацентрической формулы Остойчивость веса и формы Условия и меры начальной остойчивости судна

Вопросы лекции

Пример использования метацентрической формулы
Остойчивость веса и формы
Условия и меры начальной

остойчивости судна
Слайд 3

Знание, понимание и профессиональные навыки в соответствии с минимальным стандартом компетентности для вахтенных

Знание, понимание и профессиональные навыки в соответствии с минимальным стандартом компетентности

для вахтенных помощников капитана судов (в соответствии с ПДНВ)

Знание влияния груза, включая тяжеловесные грузы, на мореходность и остойчивость судна
Рабочее знание и применение информации об остойчивости, посадке и напряжениях, диаграмм и устройств для расчета напряжений в корпусе

Слайд 4

Знание, понимание и профессиональные навыки в соответствии с минимальным стандартом компетентности для капитанов

Знание, понимание и профессиональные навыки в соответствии с минимальным стандартом компетентности

для капитанов и старших помощников капитана (в соответствии с ПДНВ)

Понимание основных принципов устройства судна, теорий и факторов, влияющих на посадку и остойчивость, а также мер, необходимых для обеспечения безопасной посадки и остойчивости

Слайд 5

1. Пример использования метацентрической формулы

1. Пример использования метацентрической формулы

Слайд 6

В Л Cθ C γVθ P γV Кренящий момент: mкр= M(p,p) Восстанавливающий момент:

В

Л


C

γVθ

P

γV

Кренящий момент: mкр= M(p,p)
Восстанавливающий момент: mθ = M(P, γVθ)
В положении равновесия:

mкр= mθ

G

G

p

p

Слайд 7

Наклонение судна Кренование проводится для уточнения нагрузки судна При креновании судно наклоняют, перемещая

Наклонение судна

Кренование проводится для уточнения нагрузки судна
При креновании судно наклоняют, перемещая

с борта на борт крен – балласт
Углы крена при таких перемещениях не превышают 2 - 3°
Слайд 8

Данные о судне и крен-балласте Водоизмещение судна Δ = 42000 т Поперечная МЦВ

Данные о судне и крен-балласте

Водоизмещение судна Δ = 42000 т
Поперечная

МЦВ (расчетная) h = 2,1 м
Масса крен – балласта m = 100 т
Плечо переноса крен-балласта δy = 25м
Задача: определить угол крена, который приобретет судно
Слайд 9

В Л C Cθ γVθ δy θ mкр = pδy cosθ ≈ pδy

В

Л

C


γVθ

δy

θ

mкр = pδy cosθ ≈ pδy = mg δy
mθ =

Phθ = Δghθ

Крен-балласт

Слайд 10

mθ = mкр Подставив выражения для моментов:

mθ = mкр

Подставив выражения для моментов:

Слайд 11

2. Остойчивость веса и формы


2. Остойчивость веса и формы

Слайд 12

Две составляющие восстанавливающего момента: Момент остойчивости веса зависит от расположения ЦТ и ЦВ

Две составляющие восстанавливающего момента:

Момент остойчивости веса зависит от расположения ЦТ и

ЦВ судна до наклонения
Момент остойчивости формы зависит только от смещения ЦВ при наклонении судна
Слайд 13

Cθ C γVθ P Вθ Лθ G mθ = M(P,γV') mвθ = M(P,γV')


C

γVθ

P

Вθ

Лθ

G

mθ = M(P,γV')

mвθ = M(P,γV') – момент остойчивости веса

+ M(γVθ, γV'')

mфθ

= M(γVθ, γV'') – момент остойчивости формы

mθ = M(P,γV)

Слайд 14

Момент остойчивости веса mвθ ЦТ судна всегда лежит выше, чем ЦВ Момент остойчивости

Момент остойчивости веса mвθ

ЦТ судна всегда лежит выше, чем ЦВ
Момент

остойчивости веса всегда отрицателен
Чем больше ЦТ судна возвышается над ЦВ погруженного объема, тем меньше остойчивость судна
Слайд 15

Момент остойчивости формы mфθ Момент остойчивости формы зависит от смещения центра величины судна

Момент остойчивости формы mфθ

Момент остойчивости формы зависит от смещения центра

величины судна при наклонении
Смещение ЦВ происходит вследствие изменения формы погруженного объема
Слайд 16

Cθ m θ lвθ lфθ lвθ= -a sinθ mвθ= -Pa sinθ lфθ= r


m

θ

lвθ

lфθ

lвθ= -a sinθ

mвθ= -Pa sinθ

lфθ= r sinθ

mфθ= Pr sinθ

lвθ - плечо

остойчивости веса

lфθ - плечо остойчивости формы

Слайд 17

mфθ= Pr sinθ P = γV, mфθ= γIx sinθ Чем шире ватерлиния, тем


mфθ= Pr sinθ
P = γV,
mфθ= γIx sinθ
Чем шире

ватерлиния, тем больше Ix , тем больше момент остойчивости формы
Для продольных наклонений
Мфψ= γIyf sinψ
Слайд 18

P γV δV" δV' Vθ=V+δV"- δV' γVθ = γV + γδV"- γδV' mвθ=M(P,γV)

P

γV

δV"

δV'

Vθ=V+δV"- δV'

γVθ = γV + γδV"- γδV'

mвθ=M(P,γV)

mфθ=M(γδV',γδV")

Mфθ - момент пары сил

плавучести клиновидных объемов
Слайд 19

В эксплуатационных условиях углы крена и дифферента, приобретаемые судами, невелики: sinθ = θ

В эксплуатационных условиях углы крена и дифферента, приобретаемые судами, невелики: sinθ

= θ и sinψ = ψ
lвθ= -a θ и mвθ= -Pa θ ;
lвψ= -a ψ и Mвψ= -Pa ψ ;
lфθ= r θ и mфθ= P r θ;
lфψ= R ψ и Mфψ= P R ψ
Слайд 20

Роль остойчивости веса и формы a = zg-zc и r = zm-zc -

Роль остойчивости веса и формы

a = zg-zc и r = zm-zc

- близки по величине
R = zM – zc >> a
|mвθ| и |mфθ| близки по величине
|Mфψ| >> | Mвψ |
Слайд 21

При изменении осадки mфθ изменяется мало На mвθ влияет только количество и распределение

При изменении осадки mфθ изменяется мало
На mвθ влияет только количество и

распределение грузов на судне
Распределение грузов играет определяющую роль в обеспечении поперечной остойчивости судна
Продольная остойчивость от распределения грузов практически не зависит
Слайд 22

3. Условия и меры начальной остойчивости судна

3. Условия и меры начальной остойчивости судна

Слайд 23

3.1 Условие начальной остойчивости судна

3.1 Условие начальной остойчивости судна

Слайд 24

Судно остойчиво m Cθ G P γVθ m C h > 0 Мкр

Судно остойчиво

m


G

P

γVθ

m

C

h > 0

Мкр

Слайд 25

Судно не остойчиво m Cθ G P γVθ m C h Мкр G

Судно не остойчиво

m


G

P

γVθ

m

C

h < 0

Мкр

G

Слайд 26

Условие статической остойчивости судна В данном положении равновесия судно остойчиво, если соответствующая этому

Условие статической остойчивости судна

В данном положении равновесия судно остойчиво, если соответствующая

этому положению поперечная метацентрическая высота положительна h > 0
Иначе говоря, судно остойчиво, если его поперечный метацентр лежит выше центра тяжести
Слайд 27

3.2 Меры начальной остойчивости

3.2 Меры начальной остойчивости

Слайд 28

Меры начальной остойчивости- её численные характеристики: Абсолютные меры начальной остойчивости зависят от величины

Меры начальной остойчивости- её численные характеристики:

Абсолютные меры начальной остойчивости зависят от

величины водоизмещения
Относительные меры начальной остойчивости не зависят от величины водоизмещения
Слайд 29

Абсолютные меры начальной остойчивости 1. Коэффициенты статической остойчивости:

Абсолютные меры начальной остойчивости

1. Коэффициенты статической остойчивости:

Слайд 30

Абсолютные меры начальной остойчивости 2. Моменты, кренящие судно на 1° и дифферентующие судно

Абсолютные меры начальной остойчивости

2. Моменты, кренящие судно на 1° и дифферентующие

судно на 1 см:
Смысл этих величин - это восстанавливающие моменты, соответствующие крену судна в 1° и дифференту в 1см
Слайд 31

Относительные меры начальной остойчивости Метацентрические высоты – это отношение коэффициентов статической остойчивости к силе тяжести судна

Относительные меры начальной остойчивости

Метацентрические высоты – это отношение коэффициентов статической остойчивости

к силе тяжести судна
Слайд 32

Судно 1: P1, (Δ1), k1, h1, θ1 Судно 2: P2, (Δ2), k2, h2,

Судно 1:
P1, (Δ1), k1, h1, θ1

Судно 2:
P2, (Δ2), k2, h2, θ2

mкр1

mкр2

Если

k1 = k2, то θ1= θ2 при mкр1 = mкр2

Если h1 = h2, то θ1= θ2 при mкр1/P1 = mкр2/P2

Слайд 33

Метацентрические высоты и коэффициенты статической остойчивости Если у двух судов k1 = k2,

Метацентрические высоты и коэффициенты статической остойчивости

Если у двух судов k1 =

k2, при воздействии одинаковых кренящих моментов они приобретут одинаковые углы крена θ1 = θ2
Если у двух судов h1 = h2, они приобретут одинаковые углы крена θ1 = θ2 при воздействии кренящих моментов, пропорциональных их водоизмещениям
Слайд 34

Задание для самостоятельной работы: Теория судна. Статика п.п. 2.6 и 2.7

Задание для самостоятельной работы:

Теория судна. Статика п.п. 2.6 и 2.7