Introduction & overview презентация

Содержание

Слайд 2

Олег Борисович Птицын (1929-1999)

Олег Борисович Птицын
(1929-1999)

Слайд 3

PROTEIN PHYSICS LECTURE 1 Introduction & overview

PROTEIN PHYSICS
LECTURE 1
Introduction & overview

Слайд 4

Globular proteins Fibrous proteins H-bonds (NH:::OC) & hydrophobic forces Membrane proteins

Globular
proteins

Fibrous proteins

H-bonds (NH:::OC) & hydrophobic forces

Membrane
proteins

Слайд 5

Protein chain (gene-encoded sequence)

Protein chain
(gene-encoded sequence)

Слайд 6

Secondary structures (α-helices, β-strands) are most conserved structural elements. They

Secondary structures (α-helices, β-strands)
are most conserved structural elements.
They form

a basis of protein classification

One protein - various
crystallization, NMR

Homologous
(closely related)
proteins

PROTEIN HAS DEFINITE 3D STRUCTURE

Слайд 7

Слайд 8

Слайд 9

Globular proteins Fibrous proteins H-bonds (NH:::OC) & hydrophobic forces Membrane proteins Sequence & Structure

Globular proteins

Fibrous proteins

H-bonds (NH:::OC) & hydrophobic forces

Membrane
proteins

Sequence
&
Structure

Слайд 10

Globular domains C A T H

Globular
domains

C
A
T
H

Слайд 11

PROTEIN CHAIN CAN FORM ITS UNIQUE 3D STRUCTURE SPONTANEOUSLY IN VITRO

PROTEIN CHAIN
CAN FORM ITS UNIQUE 3D STRUCTURE
SPONTANEOUSLY
IN VITRO

Слайд 12

phase separation

phase separation

Слайд 13

BIND ? TRANSFORM ? RELEASE: ENZYMES (chymotrypsin) Note small active site

BIND ? TRANSFORM ? RELEASE:
ENZYMES (chymotrypsin)
Note small active site

Слайд 14

POST-TRANSLATIONAL MODIFICATIONS Sometimes, CHAIN CUT-INDUCED DEFORMATION MAKES ENZYME ACTIVE Chymotripsin

POST-TRANSLATIONAL MODIFICATIONS
Sometimes,
CHAIN CUT-INDUCED DEFORMATION MAKES ENZYME ACTIVE

Chymotripsin Chymotripsinogen

active cat. site

non-active cat.

site
Слайд 15

POST-TRANSLATIONAL MODIFICATIONS: (especially in eukaryotes): PROTEIN CHAIN CUTS (proteolysis), -

POST-TRANSLATIONAL MODIFICATIONS: (especially in eukaryotes): PROTEIN CHAIN CUTS (proteolysis), - SPLICING (inteins) -

CYCLIZATION - INTERNAL CHEM. TRANSFORMATION GLYCOSYLATION, etc. MODIFICATION OF ENDS (acetylation, etc.) MODIFICATION OF SIDE CHAINS (S-S bonding, phosphorilation, etc.) COFACTORS …
Слайд 16

Sometimes: Different folds with the same active site: the same biochemical function

Sometimes:
Different folds with the same active site:
the same biochemical function

Слайд 17

Sometimes: Similar folds with different active sites: different biochemical function

Sometimes:
Similar folds with different active sites: different biochemical function

4-helix bundle
COFACTORS:

HEME, 2Fe, RNA, …
Слайд 18

Standard positions of active sites in protein folds

Standard positions of active sites in protein folds

Слайд 19

Natively disordered protein: X-ray + SAXS + NMR + MD simulations

Natively disordered protein:

X-ray
+
SAXS
+
NMR
+
MD simulations

Слайд 20

Chaperone GroEL

Chaperone GroEL

Слайд 21

______ NMR

______

NMR

Слайд 22

Protein engineering Wanted: new protein with additional salt bridge (e.g., His+:::Asp-)

Protein engineering
Wanted: new protein with additional salt bridge
(e.g., His+:::Asp-)

Слайд 23

PROTEIN PHYSICS LECTURE 2 Elementary interactions: covalent

PROTEIN PHYSICS
LECTURE 2
Elementary interactions:
covalent

Слайд 24

Protein chain: regular backbone & gene-encoded sequence of side chains

Protein chain:
regular backbone
&
gene-encoded sequence
of side chains

Слайд 25

Protein chain Covalent bond lengths: 0.9 – 1.8 Å Covalent

Protein chain

Covalent bond lengths:
0.9 – 1.8 Å
Covalent bond angles:
109o – 120o
Atom

radii:
1 – 2 Å
Слайд 26

Side chains

Side chains

Слайд 27

Main-chain: peptide group: flat & rigid Side chains: L amino acids ___ ______ ______ Protein chain

Main-chain:
peptide group:
flat & rigid

Side chains: L
amino acids

___

______

______

Protein chain

Слайд 28

Ala _L Gly Thr Ile Two asymmetric side chains: Symmetric Asymmetric backbone-to- side_chain: Stereo images

Ala _L

Gly

Thr

Ile

Two
asymmetric
side
chains:

Symmetric
Asymmetric
backbone-to- side_chain:

Stereo images

Слайд 29

~ V = ±|V| ≅ semi-classical approximation

~

V = ±|V|


semi-classical
approximation

Слайд 30

Werner Karl Heisenberg (1901-76) — Nobel Prize 1932 Wolfgang Ernst

Werner Karl Heisenberg (1901-76)
— Nobel Prize 1932

Wolfgang Ernst Pauli ) (1900-58) 
— Nobel Prize 1945

Слайд 31

Peptide group: flat & rigid sp2 + p sp2 +

Peptide group:
flat & rigid

sp2 + p sp2 + p

Covalent bonding

in peptide group:

=

Pauling resonance
theory of = bonds:
O=C-N ↔ O-C=N

Linus Carl Pauling
(1901-94)
— Nobel Prizes:
1954, 62

O

O


O C N

Слайд 32

Main-chain: φ (N-Cα) , ψ (Cα-C’), ω (C’=N) Side-chain: χ1, χ2, ...

Main-chain:
φ (N-Cα) ,
ψ (Cα-C’),
ω (C’=N)
Side-chain:
χ1, χ2, ...


Слайд 33

Counting angles: _____________________________________________ 0o 180o 120o

Counting
angles:

_____________________________________________

0o

180o

120o

Слайд 34

sp2 - sp2 (ω) ω = 180o ω = 0o

sp2 - sp2 (ω)

ω = 180o ω = 0o

Слайд 35

Potentials: from IR spectra of vibrations sp2 - sp2 (ω)

Potentials: from IR spectra of vibrations

sp2 - sp2 (ω)

sp3

– sp3 (χ)

sp2 – sp3 (φ, ψ)

_____________________________________________

classical

Pro

All,
except Pro

H3C-CH3

H3C-C6H5

Слайд 36

Harold Abraham Scheraga (1921) Paul John Flory (1910-85) — Nobel

Harold 
Abraham 
Scheraga
(1921)

Paul John Flory (1910-85) 
— Nobel Prize 1974

Александр
Исаакович 
Китайгородский
(1914–1985)

Михаил Владимирович 
Волькенштейн (1912-92)

Олег Борисович
Птицын

(1929-99)

Поворотно-изомерная теория полимеров

Конформационный анализ

Имя файла: Introduction-&-overview.pptx
Количество просмотров: 74
Количество скачиваний: 0